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Abstract

Slaughterhouses are major players in the pork supply chain, and sup-
ply and demand must be matched in order to generate the highest profit.
In particular, carcasses must be sorted in order to produce the “right”
final products from the “right” carcasses. We develop a mixed-integer
programming (MIP) model for computing the optimal sorting of carcasses
according to two parameters; slaughter weight and fat layer. Moreover, we
consider a new approach for dealing with expected measurement errors.
The results provide insight into how sorting groups should be designed
in order to improve the profit at slaughterhouses. Finally, we comment
on the expected effect of variations in the raw material supply and the
demand as well as future research concerning joint modelling of supply
chain aspects.

Keywords: Mixed-integer programming, optimization, pork production,
sorting.

1 Introduction

The paper is concerned with pork production, and in particular with the sorting
of pig carcasses after slaughtering at Danish state-of-the-art slaughterhouses.
A main characteristic of the Danish pork sector is that the slaughterhouses
are co-operatively owned by the primary producers and that they are required
to receive the delivered pigs. This results in a strong push of raw materials.
On the other hand, strong markets-side actors have specific requirements for
the delivered products both concerning quality and quantities. This results in
a strong pull of products. The main decoupling point is located within the
slaughterhouse where the slaughtered pigs must be balanced with the demand
for final products. The sector also maintains general breeding programs which
result in relatively homogeneous pigs. However, natural variations, different
feed and growing conditions as well as different management schemes on the pig
farms still result in considerable variations in the supply.

Figure 1 schematically illustrates the supply chain around and within the
slaughterhouses. In the slaughterhouses, the pigs are slaughtered and the car-
casses are placed in a cold storage room to cool down before they are further
processed into final products – typically the following day. The raw material
variation and the varying specifications for different final products mean that
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Figure 1: Schematic illustration of simple pork supply chain showing the overall
chain from primary production to retailers, as well as the main chain within the
slaughterhouse.

not all carcasses are equally suited for the production of any mix of final prod-
ucts. The “right” carcasses must be used for the “right” final products in order
to optimize the overall profit. However, individual handling of each carcass is
not possible due to space and handling limitations, and the carcasses must be
sorted into a limited number of sorting groups. The sorting is therefore central
in order to maximize the profit. In practice, the construction of the sorting
groups is based on parameters describing the carcasses; e.g. fat layer, lean meat
percentage and slaughter weight, such that the carcasses in a given sorting group
are believed to be good for a given product mix. However, the currently used
sorting groups may have overlapping sorting criteria, and it is difficult to esti-
mate the effects of raw material variations, demand requirements and whether
or not the sorting groups are at all optimal.

We propose a mixed-integer programming (MIP) model for computing the-
oretically optimal sorting groups based on slaughter weights and fat layers of
the carcasses. The MIP model builds on a distribution of carcasses over a
grid spanned by the two parameters, and includes a new approach to handle
measurement errors. The central part of the paper is a joint modeling of the
numerical application of measurement errors and an MIP model for optimizing
the sorting groups. Models based on the one presented here are relevant for the
pork sector to gain new insight into the optimal sorting of pig carcasses in order
to improve the profit.

2 Optimization models in pork production

Mathematical models are widely used for analysis of food supply chains, e.g.
for devising optimal production plans; [4], and for modeling distribution net-
works; [2]. Food related aspects such as limited shelf-life, traceability, and the
perishable nature of raw materials are also addressed; see e.g. [3] and [11]. The
interaction between the steps of the supply chain is a main issue in supply chain
management and models are also developed to support coordination; see e.g.
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[5] where Gribkovskaya et al., formulate an MIP model which combines live-
stock collection and transportation with production planning. Customer and
consumer demands are also relevant for supply chains, and optimization models
describing the retail end of the supply chains are also found in the literature;
see e.g. [10].

Within pork supply chains, research has been done in areas such as facility
location; [1], transportation and distribution planning; [9], and marketing plan-
ning for primary producers; [8]. However, the optimal use of carcasses within
the slaughterhouses is less studied – especially considering quality aspects and
the suitability of using particular carcasses for particular final products. Nev-
ertheless, raw material costs constitute the major cost for the slaughterhouses,
and even small improvements in raw material usage will result in large benefits
for the slaughterhouses; see the Ph.D thesis [7].

An MIP model for computing the optimal use of specific predefined groups of
carcasses was developed by Kjærsgaard in [6]. The model is based on slaughter
weights and fat layer parameters and measurement errors are included through
simulated measurement noise. The MIP model in the current paper is based on
the same basic ideas and a similar production yield model. However, the devel-
oped model is based on a discretization of the parameters describing the raw
materials and includes an innovative explicit modeling of measurement errors.
Furthermore, predefined sorting groups can be specified while still computing
the optimal use of each of these groups. The developed model also supports the
direct inclusion of demand constraints even though this is not studied in the
current paper.

3 Sorting strategies and measurement errors

A carcass can be used for one of many products mixes Mn, n ∈ {1, 2, . . . , N}.
Each product mix consists of a combination of products obtained from the fore-
end, middle piece and back-end of the pig carcass resulting in a number of final
products. We assume that the parameters fat layer f and slaughter weight w are
used for sorting the carcasses into different sorting groups, and that carcasses
with identical f and w are used for the same product mix. Then the binary
functions:

SMn
(f, w) =

{
1 if carcasses with (f, w) are used for Mn

0 otherwise.
, (1)

describe for each Mn a two-dimensional map of the raw materials to use for
the product mix. Exactly one of the functions SMn

for n ∈ {1, 2, . . . , N} is
required to be one, i.e.:

N∑

n=1

SMn
(f, w) = 1, ∀ (f, w), (2)

which ensures that all carcasses are used. The profit PMn
(f, w) obtained when

producing product mix Mn from raw materials with parameters (f, w) can be
estimated using the product yield model given in Appendix A.

In practice the carcasses are sorted into a number of sorting groups g ∈
{1, 2, . . . , G} due to limitations in the cold storage room. We assume that each

3



�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
������������������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
�������������������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

weight, w

M1 M3
g=1 g=2

M1
g=3

g=4
M4
g=5

M2
g=5

fa
tla

ye
r,

 f

M2

Figure 2: Illustration of two-dimensional domain spanned by weight and fat
layer, six sorting groups (G = 6) and production of four product mixes M1 to
M4.

sorting group covers a unique area in the two-dimensional domain spanned by
f and w. Moreover, it is assumed that all carcasses in a sorting group g are
used for the same product mix. We define the functions:

F (f, w) ∈ {1, 2, . . . , G} (3)

U(g) ∈ {1, 2, . . . , N} (4)

such that F (f, w) = g if carcasses with measured parameters (f, w) belong to
sorting group g, and U(g) = n if product mix Mn is produced from raw materials
in sorting group g. We therefore have the relation:

U(g) = nSMn
(f, w), ∀ (f, w) such that F (f, w) = g, (5)

which states that the binary function SMn
(f, w) is one throughout the area

covered by sorting group g if product mix Mn is to be produced from raw
materials in group g. Optimal production is obtained by designing the sorting
groups such that the optimal product mix is produced from the raw materials.
A schematic example of six sorting groups is shown in Figure 2. The example
shows how product mix M1 is optimally produced from carcasses in sorting
groups g ∈ {1, 3}, product mix M3 is optimally produced from carcasses in
sorting group g = 2, etc.

In practice weights and fat layers are measured and therefore affected by
measurement errors such that some carcasses are erroneously placed in adjacent
sorting groups. This leads to non-optimal production and therefore loss of
profit. We assume that the measurement errors are normally distributed with
zero mean and standard deviation σf and σw for the fat layer and weight,
respectively. We also assume that there is no correlation between measurement
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errors for fat layer and weight such that:

G(f, w) =
1

2πσfσw

e
−

„
f2

2σ2
f

+ w2

2σ2
w

«

(6)

describes the measurement errors. Then G(f − f̂ , w − ŵ) is the probability

that the true parameters f and w are measured as f̂ and ŵ. Given the binary
sorting groups SMn

(f, w) we can by convolution find the probability that a given
product mix is produced from raw materials with true parameters (f, w) as:

PMn
(f, w) = (SMn

∗ G) (f, w) (7)

=

∫ ∞

−∞

∫ ∞

−∞

SMn
(f̂ , ŵ)G(f − f̂ , w − ŵ)df̂dŵ. (8)

3.1 Raw material distribution and production

The carcasses are not uniformly distributed over the domain. Moreover, heavy
carcasses often have a thick fat layer, whereas lighter carcasses have a thin fat
layer. This is described by the probability distribution D(f, w) representing
the probability that a carcass has a given combination of fat layer and weight.
Assuming that the total number of pigs considered is R then the expected
number of carcasses to be used for each product mix is:

cMn
(f, w) = PMn

(f, w)D(f, w)R. (9)

The expected profit of using a particular set of sorting groups for certain product
mixes can be computed as:

O =

N∑

n=1

∫

f

∫

w

cMn
(f, w)PMn

(f, w)dfdw, (10)

where PMn
(f, w) is the expected profit obtained by producing product mix Mn

from a carcass with parameters (f, w) as computed by the product yield model
in Appendix A. Similarly, the estimated production y of each final product j

described by the product yield model can be computed as:

yj =
∑

n∈Mj

∫

f

∫

w

cMn
(f, w)Wj(f, w), (11)

where Mj is the set of all product mixes Mn from which the final product j is
produced, and Wj(f, w) is the estimated product weight as defined in Appendix
A. Demand constraints can be formulated by restricting yj .

3.2 True and measured parameters

The model is at the same time based on assumed true values of the parameters
and measured values due to the integrated convolution of the sorting groups.
The raw material distributions and the profit calculations are based on as-
sumed true values, whereas the sorting groups are based on measured values;
see Figure 3. Working in both domains simultaneously allows us to formulate
constraints both on the sorting groups in the measured domain, and on the
production based on assumed true final product yields. Eq. (5) is an example
on how the sorting groups may be restricted, and a demand constraint will be
an example of a constraint in the true parameter domain.
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Figure 3: Illustration of model operating in two domains; one based on assumed
true parameters, and one based on measured parameters.

4 Discretization and mathematical programming

The optimal use of the carcasses was in [6] illustrated on a two-dimensional
grid spanned by fat layer and slaughter weight. However, the grid was not an
integrated part of the optimization model. A similar discretization using F fat
layer groups and W weight groups resulting in F × W cells is here used as the
basis for the optimization model itself; see Figure 4. The discretization step
sizes are defined by ∆f and ∆w, and fmin, fmax, wmin and wmax define the fat
layer and weight in the center of the first and last cells of the domain. For
simplicity, we assume that the parameters are selected such that ∆f = 1 mm
and ∆w = 1 kg. These choices comply with the illustrations of results in [6].
Each cell covers an interval around the center value such that the cell defined
by (ff , ww) covers the intervals [ff − 1

2
; ff + 1

2
[ and [ww − 1

2
; ww + 1

2
[. The

calculation of product yield and estimated profit for each cell is by default
based on the center of the cell. That is, all carcasses falling within each cell are
implicitly assumed to have parameters corresponding to the center of the cell.
This leads to discretization errors in the representation of the assumed true raw
material distribution. However, in practice the true raw material distribution
is not known, and the discrete distribution represents one possible distribution
based on the assumed true distribution. Moreover, the true product yield and
obtained profit may deviate from the estimated product yield and profit based on
the linear product yield model in Appendix A. A simulation study in Section 5
is concerned with sorting of the true raw materials based on sorting groups
generated by the proposed model. Further analyses of varying raw material
distributions, demand requirements and better product yield models are part of
current research, and outside the scope of the present paper.

4.1 The MIP model

The MIP model is based on a number of sets, parameters, decision variables
and constraints. Boldface characters are used to indicate the discrete elements
of the sets given below, and the parameters and decision variables are given in
Tables 1 and 2, respectively.

Fat layer indices: f ∈ {1, 2, . . . , F} such that the fat layer in the center of
the cells is given as ff = fmin + (f − 1).

Weight indices: w ∈ {1, 2, . . . , W} such that the weight in the center of the
cells is given as ww = wmin + (w − 1).
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Figure 4: Illustration of discrete parameter space.

Product mix indices: n ∈ {1, 2, . . . , N}.

Final products: j ∈ {1, 2, . . . , J}.

Sorting groups: g ∈ {1, 2, . . . , G}.

Bandwidth: bf ,bw ∈ {1, 2, . . . , B}, (see below).

Constraints

All cells are assigned to a sorting group, which is used for exactly one of the N

product mixes: ∑

n

sn,f ,w = 1, ∀ f ,w. (12)

For each of the sorting groups g, we have

ug =
∑

n

nsn,f ,w, ∀ f ,w such that FIXf ,w = g, ∀g (13)

which is the discrete version of Eq. (5) ensuring that all cells belonging to the
fixed sorting group g are used for the same product mix.

A discrete blurring operator, Hbf ,bw
, based on Eq. (6) is defined in Appendix

B. We assume a discretization over the domain 1 to B, where the bandwidth B

is uneven such that h =
⌊

B
2

⌋
defines the half bandwidth, and m = h + 1 defines

the midpoint. The convolutions of Hbf ,bw
with the binary maps defined by the

decision variables sn,f ,w result in associated probability maps:

pn,f ,w =

f̂=f+h, ŵ=w+h∑

f̂=f−h, ŵ=w−h

Hf−f̂+m,w−ŵ+msn,̂f,ŵ, ∀n, f ,w, (14)

describing the probability to use raw materials with parameters ff and ww for
product mix n given the sorting groups defined by sn,f ,w. However, f̂ and ŵ in
Eq. (14) fall outside the domain for values of f and w close to the boundary. This
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Parameter Description

Hbf ,bw
A discrete blurring operator based on Eq. (6) that de-
fine the measurement errors.

HM

f ,w,̂f ,ŵ
A precomputed parameter relating true and measured
values. See below.

PROFITn,f ,w The estimated profit obtained when producing each
of the product alternatives from raw materials with
parameters ff and ww using the product yield model
from Appendix A.

WEIGHTj,f ,w The estimated weight of final product j if produced
from raw materials with parameters ff and fw using
the product yield model from Appendix A.

USEj,n Binary parameter taking value one if the final product
j is produced from product mix n and zero otherwise.

FIXf ,w The predefined group number that a carcass with pa-
rameters ff and ww belongs to.

Df ,w Distribution of raw material.
R Total number of pig carcasses.

Table 1: Parameters.

Decision variables Description

sn,f ,w Binary variables describing the sorting groups from
Eq. (1) over the discrete domain. These variables form
binary images of the sorting groups for each product
mix n.

ug The product alternative to produce from sorting group
g as defined in Eq. (4).

Table 2: Decision variables.

8



results in the implicit assumption that no sorting groups are used beyond the
boundaries because values outside the domain are by default assumed to be zero.
A better assumption is that the sorting groups at the boundary are continued
also outside the boundary. For simplicity, we only consider measurement errors
in the fat layer parameters, and hence continued sorting groups along the sides
of the domain where f = 1 and f = F . The convolutions with these boundary
conditions along the two sides of the domain are given as:

pC
n,f ,w = pn,f ,w

+

f̂=h−f+1, ŵ=w+h∑

f̂=0, ŵ=w−h

Hm+1−f̂−f ,w−ŵ+msn,1,ŵ

+

f̂=F+1, ŵ=w+h∑

f̂=2F−f−h+1, ŵ=w−h

H
m+1−f̂−f ,w−ŵ+m

sn,F,ŵ, ∀n, f ,w, (15)

where the superscript C indicates continuous sorting groups. A parameter
HM

f ,w,̂f ,ŵ
which explicitly relates each combination of true and measured pa-

rameters can be pre-computed based on Hbf ,bw
, and Eq. (15) is simplified to:

pC
n,f ,w =

∑

f̂ ,ŵ

HM

f ,w,̂f ,ŵ
sn,̂f,ŵ, ∀n, f ,w. (16)

The expected number of carcasses used for each product mix is given by:

cn,f ,w = Df ,wRpC
n,r,w, ∀n, f ,w, (17)

in analogy with Eq. (9), and the amount of final products can be computed as:

yj =
∑

n,f ,w

USEj,nWEIGHTj,f ,wcn,f ,w ∀ j. (18)

Demand constraints can then eventually be formulated by restricting yj. Finally,
the objective is to select the optimal use of the raw materials in each sorting
group such as to maximize the expected profit:

maximize
∑

n,f ,w

PROFITn,f ,wcn,f ,w. (19)

5 Computed example

We use the same raw material data as in [6], and the distribution of the 43,949
carcasses is seen in Figure 5. Only few carcasses with a slaughter weight above
99 kg exist which is due to a price penalty imposed onto heavy pigs. The
model is used to define sorting groups on a grid spanned by 20 cells in the fat
layer dimension and 37 cells in the weight dimension. This is equivalent to the
situation in [6] and the boundaries of the domain are defined by the parameters:

f̄min = 7.5mm, f̄max = 26.5mm, ∆f = 1

w̄min = 63.5kg, w̄max = 99.5kg, ∆w = 1.
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Figure 5: Distribution of carcasses over the extended domain. The colors indi-
cate the amount of carcasses in each cell.
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Figure 6: Illustration of sorting groups. The model is allowed to select the
product mix individually for cells in the central domain. In the extended do-
main, the product mixes are identical to the nearest cell on the boundary of the
central domain.

We observe from Figure 5 that some of the 43,949 carcasses fall outside the
above domain. In [6], profit and product yields were calculated for each indi-
vidual carcass, and the grid was used only to illustrate the sorting groups. The
carcasses falling outside the domain were placed in the sorting groups at the
boundary of the domain. The current model is based on profit and product
yield computations performed directly on the discrete grid. This may result
in significant errors if carcasses falling far outside the domain are represented
in the cells at the boundary. The domain is therefore extended to cover all
carcasses such that:

fmin = 6.5mm, fmax = 36.5mm, ∆f = 1

wmin = 44.5kg, wmax = 132.5kg, ∆w = 1,

define an extended domain with F = 31 cells in the fat layer dimension and
W = 89 cells in the weight dimension. Furthermore, we restrict the sorting
groups of the cells which fall outside the central domain to be equal to the sorting
group at the boundary of the central domain using the parameters FIXf ,w. In
this way, carcasses falling outside the central domain will be used for the same
product mix as the carcasses falling at the boundary of the central domain. The
situation is illustrated in Figure 6.

Finally, we use a discrete blurring operator as defined in Appendix B, as-
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Figure 7: Theoretically optimal production of product mix M1 (black), M2

(dark gray), M3 (light gray), and M4 (white). Top: Extended domain. Bottom:
central domain enlarged.

suming a uniform distribution of carcasses within each cell and an upsampling
factor of a = 32.

Example 1a

We consider the perfect situation with no measurement errors, i.e. σf = σw = 0,
such that each cell is optimally used for one product mix regardless of the raw
material distribution. The optimal sorting groups are computed based on an
even distribution of pigs over the central domain in order to avoid cells with no
carcasses. We allow each of the 20 × 37 = 740 cells in the central domain to
be used for any of the four product mixes. Figure 7 shows how the carcasses
from each cell should be used in order to obtain the theoretically maximum
profit. The figure also illustrates how the sorting groups are extended outside the
central domain; especially visible for the white sorting group which is extended
downwards. Finally, we fix the sorting groups and apply the true raw material
distribution from Figure 5. The expected profit based on the 43,949 carcasses
is calculated and seen in Table 3 as case 1.

Example 1b

We now set σf = 1.28, which reflects the actual error of the fat layer measure-
ments at the slaughterhouses. The sorting groups are fixed from Example 1a,
but the expected fraction of carcasses in each cell is now based on the distribu-
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tion of measurement errors. The expected profit is reported in Table 3 as case
2, and is seen to be lower than for case 1 because of the expected misplacement
into non-optimal sorting groups. Figure 8 illustrates this misplacement within
the central domain. The top-most image shows the probability that product
mix M4 is produced given the sorting groups in Figure 7. We note that the
probability is blurred across the sorting group boundary due to the assumed
distribution of measurement errors. The estimated number of carcasses used
for product mix M4 is illustrated in the bottom image. A considerable number
of carcasses with a true fat layer below 14 mm are assumed to be used for prod-
uct mix M4 even though the optimal use of these carcasses would be product
mix M3.

Example 1c

We now compute the optimal sorting groups while explicitly taking into account
the distribution of measurement errors. This results in the sorting groups for
the central domain shown in Figure 9. The sorting groups are similar, but not

identical to the sorting groups in Figure 7. For instance, it is no more optimal
to put carcasses with a measured fat layer of 12 to 14 mm and a weight above
90 kg into a sorting group for product mix M1. The reason is that for these cells
a larger profit loss is obtained by erroneously producing M1 if M2 is optimal
than visa versa. The most heavy pigs are even now optimally used for product
mix M4 due to presence of heavier carcasses outside the central domain. The
expected profit is shown as case 3 in Table 3. Based on the total supply of
R = 43, 949 carcasses, we expect to gain DKK 60,538 as compared to case 2,
i.e. by changing the sorting groups from the ones shown in Figure 7 to the ones
in Figure 9. The difference for the Danish slaughterhouses on an annual basis
would be DKK 27.6 mio assuming an annual production of 20 mio pigs.

The sorting groups in Figure 9 can be compared to the the images reported
in [6] where the optimal raw material uses are calculated explicitly based on
simulation of measured parameters. Indeed, the optimal raw material uses are
similar, which indicates that the proposed model correctly accounts for the
measurement errors.

Simulation study

We address the discretization error in representing the raw material distribution
on a discrete grid. In the above example, all profit calculations were based on
the center of the cells. However, the profit and product yield change within
the cells such that the estimated profit depends on the actual placement of

Case 1 Case 2 Case 3
Profit in DKK 38,256,455 37,993,594 38,054,132

Table 3: Optimal expected profits assuming no measurement errors (case 1), the
expected profit using the same sorting groups but sort according to measured
parameters (case 2), and the optimal expected profit when measurement errors
are taken into account when computing the optimal sorting groups (case 3).
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Figure 8: Top: probability for producing product mix M4 when the sorting
categories in Figure 7 are used, and the fat layer measurement errors have
σf = 1.28. Bottom: actual number of pigs (of 43,949 in total) used for product
mix M4.
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Figure 9: Optimal sorting groups while taking into account that values of the
fat layer are contaminated by measurement errors with σf = 1.28. The gray
scale levels are equivalent to Figure 7.
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Figure 10: Different assumptions on the carcass placement within the cells.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Case 1 38,008,982 38,221,215 37,765,183 37,972,323
Case 2 38,077,391 38,285,412 37,824,149 38,035,561
Difference 68,409 64,197 58,966 63,238

Table 4: Expected profit in DKK for each of the four scenarios using the default
sorting groups from Figure 7 (Case 1), and the computed optimal sorting groups
(Case 2), respectively.

the raw materials within the cells. We consider four scenarios in which the
profit calculations are based on different points within the cells; see Figure 10.
For instance, the carcasses are assumed to be lighter and skinnier in scenario
1 as compared to the centered case, and heavier and fatter in scenario 4, etc.
Table 4 shows the estimated profit obtained using the default sorting groups
from Figure 7 and the optimal sorting groups computed by the model. The
optimal sorting groups have a structure very similar to the sorting groups shown
in Figure 9 for the centered case. The results show that the placement of the
carcasses within the cells severely impact the calculated profit. Heavier carcasses
(scenario 2 and 4) result in higher profit than lighter carcasses (scenario 1 and
3), and lean carcasses (scenario 1 and 2) result in higher profit than more fat
carcasses (scenario 3 and 4). However, the difference from using default sorting
groups to using optimal sorting groups is approximately DKK 60,000 to 70,000
in all four scenarios as was the case in Example 1c.

Finally, we perform a simulation study where each of the 43,949 carcasses
are processed individually and normally distributed noise with zero mean and
standard deviation σf = 1.28 is added to the fat layer parameters in order
to simulate the measurement noise. Each carcass is then placed in the cell
corresponding to the slaughter weight and the simulated measured fat layer and
used for the product mix as described by each of the sorting groups. The profit
calculations are based on the assumed true slaughter weights and fat layers
as given for the individual carcasses. Table 5 shows the minimum, maximum
and mean of the obtained profit over 10 realizations of the measured fat layers.
Obviously, the carcasses are not necessarily centered in the cells, and the mean
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Profit
Sorting groups Min Max Mean
Figure 7 37,962,870 37,973,447 37,969,059
Figure 9 38,025,022 38,031,269 38,027,333
Scenario 1 38,021,385 38,027,756 38,023,490
Scenario 2 38,026,262 38,030,903 38,027,626
Scenario 3 38,024,917 38,031,207 38,027,287
Scenario 4 38,024,291 38,030,338 38,026,462

Table 5: Simulated profit when sorting the true carcasses according to various
sorting groups based on 10 realizations of the fat layer measurements.

profits are seen to be lower than the estimated profit reported in Example 1c.
However, the profits are well within the span of profits reported in the four
scenarios above. Moreover, a profit gain of more than DKK 54,000 as compared
to the default sorting groups in Figure 7 is obtained using the sorting groups
in Figure 9 as well of any of the similar sorting groups underlying scenarios 1
through 4.

6 Discussion and conclusion

The model illustrates how measurement errors can explicitly be taken into ac-
count when designing theoretically optimal sorting groups for pig carcasses for
production of a number of product alternatives. Moreover, the example shows
how the theoretically optimal sorting strategies change when measurement er-
rors occur.

The modeling capabilities are interesting for a number of reasons. Obviously,
the raw material distribution has an impact on the optimal sorting categories
when measurement errors are considered because the number of misplaced pig
carcasses is influenced by the raw material distribution; see e.g. Eq. (17). This
means that the same sorting strategy is not necessarily optimal for two different
raw material distributions. In [5], it was studied how to plan the supply of live-
stock in order to maintain a steady production at the slaughterhouse. However,
it is relevant to take into account not only the flow of raw materials, but also
quality parameters – here represented by slaughter weight and fat layer. It is
therefore interesting to use the model on different raw material distributions,
e.g. raw materials from different days or seasons, in order to analyze how the
optimal sorting is affected by variations in the raw material supply. This ap-
proach may indicate that more advanced sorting groups should be considered
in order to handle the variation. In a more holistic setting, it is also relevant to
consider joint modeling of the supply of live pigs and the sorting groups.

The model should also be extended to include demand requirements; e.g
such in order to compute how some of the sorting groups must be expanded in
order to support minimum demand requirements. How to change the sorting
groups obviously depends on the raw material distribution and the expected
misplacement into wrong sorting groups. Models based on the one presented
here may be used to compute optimal sorting groups such that the sorting in
the cold storage room reflects the expected raw material supply as well as the
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expected product demand.
It is highlighted that the approach taken in the current paper is to compute

the theoretically optimal sorting groups based on the risk for misplacement.
Apart from the simulation study, we do not consider actual realizations of the
measurement errors. In line with above comments this suggests that additional
sensitivity analyses and improved knowledge on raw material supply and de-
mand patterns are important steps toward applying the models in practice.
Furthermore, ongoing research deals with more product alternatives and more
final products, as well as emerging possibilities to perform additional sorting
before the final production.

The paper addresses the sorting groups within the slaughterhouse, which is
only part of a larger supply chain as shown in Figure 1. The perspectives for
modeling the interaction between several actors is therefore interesting. More-
over, quality and safety aspects are affected by actors throughout the chain,
and optimal decisions in one part of the chain will affect the possibilities for
profit optimization in other parts of the chain. Future research directions in-
clude joint modeling of several aspects such as supply and demand, as well as
transportation, primary production and optimal raw material utilization.
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Appendix A Product yield model

A product yield model is constructed to estimate the value of a pig carcass with
given slaughter weight and fat layer when used for a certain product mix. The
model is based on the parameters in Table 6. Note that the last product is
an auxiliary product only used for the internal calculations. The value of this
product is therefore zero. In general, the product weight Wj of each product j

if produced from raw materials with fat layer f and slaughter weight w is given
as:

Wj(f, w) = PWj + PFjf + PWWjw.

However, the weight of some products are calculated separately:

WSundry 3(f, w) = WBacks w bones(f, w) + WBreast 1(f, w)

+ WCutOff 2(f, w) + WSundry2(f, w)

− WBacks boneless(f, w) − WBreast 2(f, w)

− WCutOff 3(f, w)

WSundry 4(f, w) = WBack-end aux(f, w) − WHam(f, w)

WSundry 5(f, w) = WBack-end aux(f, w) − WHam boneless(f, w)

− WCutOff 5(f, w)
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WHead(f, w) = w − WShoulder(f, w) − WNeck(f, w)

− WBacks w bones(f, w) − WBreast 1(f, w)

− WHam boneless(f, w) − WCutOff 1(f, w)

− WCutOff 2(f, w) − WCutOff 5(f, w)

− WSundry 1(f, w) − WSundry 2(f, w)

− WSundry 5(f, w) − WTenderloin(f, w)

Moreover, if WSundry 4(f, w) < 0.1 then the weight of Ham and Sundry 4 are
corrected such that:

WHam(f, w) = WHam(f, w) − (0.1 − WSundry 4(f, w))

and (20)

WSundry 4(f, w) = 0.1

Product (j) P PC PW PF PWW
Shoulder 12 0.00 0.00000 -0.06938 0.10726 1,2,3,4
Neck 13 0.00 0.00000 -0.04096 0.07282 1,2,3,4
Backs w bones 18 -0.20 10.77058 -0.01662 0.01354 1,2
Breast 1 13 -0.20 2.00642 0.04284 0.06002 1,2
Backs boneless 25 -0.20 0.46036 -0.08124 0.08666 3,4
Breast 2 17 -0.20 2.00642 0.04284 0.06002 3,4
Ham 15 -0.20 0.00000 -0.10204 0.27632 1,3
Ham boneless 18 -0.20 -1.11490 -0.19054 0.22874 2,4
CutOff 1 9 -0.10 0.00000 -0.00596 0.00834 1,2,3,4
CutOff 2 9 -0.10 0.00000 -0.00596 0.00834 1,2
CutOff 3 9 -0.10 0.00000 -0.00596 0.00834 3,4
CutOff 5 9 -0.10 0.00000 -0.00596 0.00834 2,4
Sundry 1 3 0.00 -1.95414 0.07922 0.13368 1,2,3,4
Sundry 2 3 0.00 -14.54192 0.11178 0.24410 1,2
Sundry 3 3 0.00 0.00000 0.00000 0.00000 3,4
Sundry 4 3 0.00 0.00000 0.00000 0.00000 1,3
Sundry 5 3 0.00 0.00000 0.00000 0.00000 2,4
Tenderloin 30 0.00 1.20000 0.00000 0.00000 1,2,3,4
Head 3 0.00 0.00000 0.00000 0.00000 1,2,3,4
Back-end aux 0 0.00 -1.58570 -0.10160 0.29790

Table 6: Parameters for product yield model: P (price), PC (price coefficient),
PW (product weight constant), PF (weight fat dependent parameter), PWW
(weight weight dependent parameter) – all in DKK. The last column indicates
the product mixes that the given product is a part of.
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A number of quality deductions QD apply:

QDBacks w bones(f, w) =

{
2 if WBacks w bones(f, w) > 7
0 otherwise

QDBacks boneless(f, w) =

{
2 if WBacks boneless(f, w) > 7
0 otherwise

QDBreast 2(f, w) =

{
6 if WBreast 2(f, w) > 8
0 otherwise

QDHam(f, w) =

{
4 if f > 14
0 otherwise

Quality deductions are zero for all other products.
Finally, the value of using a pig with parameters f and w for a given product

mix is given as:

PMn
(f, w) =

∑

JMn

(Pj − QDj(f, w) + PCj(f − 15.9)) ∗ Wj(f, w),

where JMn
is the set of products that are part of the product mix Mn as given

in the last column of Table 6.

Appendix B The discrete blurring function

The two-dimensional Gaussian function G(f, w) from Eq. (6) can be sampled
over the bandwidth B in both dimensions such that:

Gbf ,bw
=

1

2πσfσw

e
−

„
(bf−m)2

2σ2
f

+
(bw−m)2

2σ2
w

«

, (21)

can be used as a discrete approximation of the blurring function in the opti-
mization model. All variables are defined in Section 4. However, discretization
errors occur and all carcasses are assumed to lie in the center of the cells. The
latter means that small measurement errors may not result in any misplacement,
whereas even small measurement errors in practice will lead to some misplace-
ment of carcasses. A more dense discretization will reduce the discretization er-
rors, but the size of the MIP model will increase. We therefore define a discrete
blurring operator based on an upsampled grid and assume, for the construction
of the blurring operator, that the carcasses are uniformly distributed over the
cells. For simplicity, we derive the equations only for the fat layer dimension
and leave out the weight indices. Similar calculations can be performed for the
slaughter weights and applied independently.

We define the upsampling factor a = 2p, p ∈ N such that F̃ = {. . . , 1
2
, 1

2
+

1
a
, . . . , F + 1

2
− 1

a
, . . . } is the set of points defining a grid. The original index fi

is subsampled onto [fi − 1
2
, fi − 1

2
+ 1

a
, . . . , fi + 1

2
− 1

a
]. We consider a Gaussian

function sampled over the upsampled fat layer indices f̃ ∈ F̃ such that:

G(f̃ ) =
1

a

1

σf

√
2π

e
−

(f̃−fm)2

2σ2
f , (22)
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where 1
a

is the grid spacing. We also define an upsampled sorting map s̃n(f̃ )
which equals the original binary sorting map sn,f for all coinciding indices:

s̃n(f̃) =

{
sn,f for f̃ ∈ [fmin, fmin + 1, . . . , fmax]
0 otherwise

(23)

Finally, we assume a uniform distribution of carcasses within each cell:

U(f̃) =

{
1
a

for f̃ ∈ [− 1
2
; 1

2
− 1

a
]

0 otherwise
(24)

The uniform distribution and the measurement errors can be applied to the
sorting groups by two convolutions such that:

Pn(f̃) = G(f̃ ) ∗
(
U(f̃ ) ∗ s̃n(f̃ )

)
(25)

is the probability that a carcass is used for product mix Mn given on the up-
sampled grid. Convolution is associative such that

Pn(f̃) =
(
G(f̃) ∗ U(f̃)

)
∗ s̃n(f̃ ) (26)

=




∑

f̄∈ eF

G(f̃ − f̄)U(f̄ )


 ∗ s̃n(f̃ ). (27)

The summation limits can be reduced as U(f̃ ) = 1
a

for f̃ ∈ [− 1
2
; 1

2
− 1

a
] and zero

otherwise, such that:

Pn(f̃) =



1

a

1
2−

1
a∑

f̄=−
1
2

G(f̃ − f̄)



 ∗ s̃n(f̃ ). (28)

The next convolution results in:

Pn(f̃ ) =
1

a

∑

f̂∈ eF




1
2−

1
a∑

f̄=−
1
2

G(f̃ − f̂ − f̄ )



 s̃n(f̂ ) (29)

=
1

a

F∑

f̂=1




1
2−

1
a∑

f̄=− 1
2

G(f̃ − f̂ − f̄)


 s

n,f̂
, (30)

where the upsampled indices of the first sum can be exchanged by the original
indices because s̃n(f̃ ) is zero for all indices different from the original. Finally,
we sum up the probabilities on the upsampled grid to get the probabilities on
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the original grid:

Pn,f =

f+ 1
2−

1
a∑

f̃=f− 1
2

Pn(f̃ ) (31)

=

f+ 1
2−

1
a∑

f̃=f− 1
2

1

a

F∑

f̂=1




1
2−

1
a∑

f̄=− 1
2

G(f̃ − f̂ − f̄)


 s

n,f̂
(32)

=

F∑

f̂=1



1

a

1
2−

1
a∑

f̃=− 1
2

1
2−

1
a∑

f̄=−
1
2

G(f̃ − f̂ + f − f̄)



 s
n,f̂

(33)

=

F∑

f̂=1

H(f − f̂)s
n,f̂

. (34)

We note that this defines a convolution on the original grid with the convolution
kernel H(f) given by:

H(f) =
1

a

1
2−

1
a∑

f̃=− 1
2

1
2−

1
a∑

f̄=−
1
2

G(f + f̃ − f̄) (35)

=
1

a2σf

√
2π

1
2−

1
a∑

f̃=− 1
2

1
2−

1
a∑

f̄=− 1
2

e
−

f+f̃−f̄−fm

2σ2
f . (36)

Finally, a two-dimensional blurring function is computed by multiplying Eq. (36)
with a similar function describing the blurring in the weight dimension. By
exchanging the primary indices to the bandwidth sets used in the optimization
model, we get the discrete blurring operator:

Hbf ,bw
=

1

2πa4σfσw

1
2−

1
a∑

f̃=− 1
2

1
2−

1
a∑

f̄=− 1
2

1
2−

1
a∑

w̃=− 1
2

1
2−

1
a∑

w̄=− 1
2

e
−

„
(bf +f̃−f̄−m)2

2σ2
f

+
(bw+w̃−w̄−m)2

2σ2
w

«

.
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Slaughterhouses are major players in the pork supply chain, and supply and demand must be 
matched in order to generate the highest profit. In particular, carcasses must be sorted in order to 
produce the “right” final products from the “right” carcasses. We develop a mixed-integer program-
ming (MIP) model for computing the optimal sorting of carcasses according to two parameters; 
slaughter weight and fat layer. Moreover, we consider a new approach for dealing with expected 
measurement errors. The results provide insight into how sorting groups should be designed in order 
to improve the profit at slaughterhouses. Finally, we comment on the expected effect of variations 
in the raw material supply and the demand as well as future research concerning joint modelling of 
supply chain aspects. 
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