

Energy advantage of concrete

aalborg portland group

Literature study, calculations on theoretical and reel buildings, using 5 different calculating tools in several European climates

Results:

- "Light" buildings consume 2-9% more energy than "heavy" buildings
- In office buildings the difference is 7-15%
- Difference in cooling energy even higher: up to 20% for dwellings and 25% for offices

Source: CEMBUREAU 2006 Research and Development Centre

Sample residential building

aalborg portland group

	Predicte	Mean monthly temperature				
Region	kWh/m²,year				Oct-Apr	
	Solid	Light- weight	Diff.	%	Co	
Polar circle	128,7	133,4	4,7	3,7%	-7,9	
Northern Europe	66,7	70,7	4	6,0%	1,1	
Northern Europe coastal	53,1	57,4	4,3	8,1%	3,4	
UK	37,6	43,1	5,5	14,6%	5,9	
Benelux	42,2	48,8	6,6	15,6%	5,6	
Central Europe	49,2	53,3	4,1	8,3%	3,8	
Alpine	60,6	65,9	5,3	8,7%	1,4	
Mediterranean	8,0	12,2	4,2	52,5%	12,1	

Consolis tool

Research and Development Centre

2

Climate	Programme	Orientation of windows	Energy use for heating/cooling kWh/m²,year		Difference Light/Solid	
			Solid	Light	%	
Stockholm	Consolis	E/W	66,7	70,7	6,0	
Stockholm	Consolis	S	51,5	56,5	9,7	
Stockholm	VIP+	E/W	64,5 11,3*	66,9 13,2*	3,7 16,5*	
Stockholm	VIP+	S	54,5 12,4*	60,1 15,0*	5,3 20,3*	
Würzburg	TCasa	E/W	60,3	61,7	2,4	
Würzburg	TCasa	S	54,1	56,0	3,5	
Denmark	Be06	E/W	47,3 3.4*	48,0 4.3*	1,2	

Utilising the energy advantage

aalborg portland

- Exposed concrete parts, e.g. coffered floor slabs, and night ventilation, e.g. under-floor ventilation, to provide free passive cooling during daytime.
- Use of free cooling in an air conditioning system by the use of hollow core concrete slabs through which air is distributed.
- Use of precast concrete elements as outer walls to provide very low transmission losses and excellent air-tightness.
- Use of water-cooled slabs containing pipework linked to the heating and cooling system.

Source: CEMBUREAU 2006 Research and Development Centre

10

Possible energy savings • Reduce energy consumption and CO₂ emission related to cooling by 75-80% • Reduce heat consumption and related CO₂ emission by 35-50% • Reduce the energy for ventilation and related CO₂ emission by 35-50% • Use of renewable supply sources, i.e. seawater, ground water, air and solar energy

