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Foreword 
COST ACTION FA1102: FAIM  
(FARM ANIMAL IMAGING)
L. Bünger
 
Animal and Vet. Science Group, Scotland’s Rural College (SRUC), King’s Buildings, Edinburgh, UK

What is COST?  
COST is a flexible, fast and efficient 
intergovernmental framework for European 
Cooperation in Science and Technology, allowing 
the coordination of nationally-funded research 
on a European level with a very specific mission 
and goal. It allows bringing good scientists and 
representatives of the industry together under light 
strategic guidance. COST is based on networks, 
called COST Actions, centred around research 
projects in fields that are of interest to at least 
five COST countries. Thereby COST contributes to 
reducing the fragmentation in European research 
investments and opening the European Research 
Area to cooperation worldwide. COST acts as a 
precursor of advanced multidisciplinary research, 
and it plays a very important role in building 
a European Research Area. It anticipates and 
complements the activities of the EU Framework  

 
Programmes, and builds “bridges” towards the 
scientific communities of emerging countries. It 
also increases the mobility of researchers across 
Europe and fosters the establishment of scientific 
excellence in nine key domains. Our COST action 
FAIM is in the Food and Agriculture domain 
(www.cost.eu about_cost). 

Who is in our COST Action?
This unique COST Action (FAIM) brings together 
120 to 200 experts from so far 20 (25) EU 
countries (and beyond). Number of participants is 
steadily growing. (www.cost.eu/domains_actions/
fa/Actions/FA1102?management).  

We started in late 2011 and will be “on the road” 
until 2015. The figure below shows our 
management structure.
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What is our COST action FAIM about? 
The title says it all, (almost!): “Optimising 
and standardising non-destructive imaging 
and spectroscopic methods to improve the 
determination of body composition and meat 
quality in farm animals (FAIM).” FAIM aims to 
optimise non-destructive in vivo (iv) and post 
mortem (pm) imaging and spectroscopic methods 
for the measurement of body composition 
and meat quality (MQ) in major farm animal 
species and to devise standardised principles 
of carcass classification and grading (CCG) 
across countries. These actions are necessary 
for the development of value-based payment 
and marketing systems (VBMS) and to meet 
the urgent need for market orientated breeding 
programmes. FAIM encompasses collaboration of 
hard- and software manufacturers with livestock 
and imaging academic experts to develop 
required products for implementing the scientific 
work. FAIM will coordinate and strengthen 
EU scientific and technical research through 
improved cooperation and interactions. This will 
be essential for achieving the required advances 
in CCG systems to measure carcass yield and 
MQ, to meet the industry need for VBMS, and to 
improve production efficiency throughout the 
meat supply chain (MSC). FAIM will also support 
EU legislation on individual animal identification 
through showing the additional benefits of feeding 
back abattoir data on individual animals for 
optimising management, breeding and providing 
phenotypic information which will facilitate future 
implementation of genome wide selection.

Our Objectives
•  To review and develop robust references from 

imaging technologies for measuring body and 

carcass composition

•  To review and develop harmonised procedures for 

in vivo, post-mortem and on-line imaging methods 

of predicting compositional traits

•  To review and develop harmonised procedures 
for in vivo, post-mortem and on-line imaging and 
spectroscopic methods of predicting Meat Quality 
in livestock

•  If full automation cannot be achieved, a lesser 
option is provided by semiautomatic methods, 
where results are obtained though human 
computer interaction

•  To review and harmonise methods and equipment 
for individual animal traceability to optimise 
management, breeding and permit the future use 
of genomics.

Our means:
Annual Conferences (AC): first and latest (FAIM I) 
was in September 2012 in Dublin hosted by Teagasc 
Food Research Centre, Ashtown, Dublin. 24th - 26th 
September 2012. The second AC (FAIM II) will be in 
Kaposvár/Hungary (Kaposvár University; 29 & 30 of 
Oct.2013)

Workgroup meetings: mainly in connection 
with the AC but there is more: e.g. WG1 met in 
Jan. 2013 in Lyngby: Use of phantoms in computed 
tomography, e.g. WG 1 and WG2 will meet during 
the EAAP 2013 (26-30 Aug.) and FAIM will organise 
one session: Carcass and meat quality: from 
measurement to payment. e.g. WG3 will meet on 
“Farm Animal and Food Quality Imaging” in Espoo, 
Finland as satellite to Scandinavian Conference on 
Image Analysis (SCIA’13): 17/6/2013 and all WGs will 
meet at FAIM II in October

Training schools: we had 2 TS in 2012: (1) on 
image analysis in Lyngby, Denmark May 2012, (2) on 
Farm Animal Imaging & Carcass/Meat Quality 
in Oberschleissheim and Kulmbach Germany, 
October 2012.

STSMs (in full: Short term Scientific missions): 
We had 6 STSMs in 2012 and we have the power to 
support more. Please come forward and ask!!

Where to find information about FAIM
Our Action website:
www.cost-faim.eu
FAIM website at main COST site:  
www.cost.eu/domains_actions/fa/Actions/FA1102
Domain website:  
www.cost.eu/domains_actions/fa

About this book
The papers included in this book are supplementary 
to the abstracts provided in the proceedings book 
received by delegates at the FAIM I conference held
at Teagasc Food Research Centre, Ashtown, Dublin 
on the 25-26th September 2012. The papers in this 
book have not been peer reviewed.

Would you like to participate?
Email me! Lutz.Bunger@sruc.ac.uk
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Participants of the FAIM training school in Kulmbach, Oct 2013

Participants of the FAIM training school in Oberschleissheim, Oct 2013
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Overview to the FAIM I Meeting
Farm Animal Imaging Opportunities 
and Challenges
C.A. Maltin and C.R. Craigie
 
Quality Meat Scotland, The Rural Centre, Ingliston, Edinburgh EH28 8NZ

Value for industry

•	Measurement is important for those meat producers and processors who wish 
to increase their business efficiencies and profitability.

•	 Imaging techniques offer meat producers and processors the opportunity to 
make a wide range of measurements on living animals, carcases and meat in 
real time; including animal growth rate and health, body and carcase 
composition, and food safety and food quality.

•	To get the benefits from taking measurements it is also important to have a 
good system for individual animal traceability which allows animal ID to be 
maintained from the farm through processing to packing.

•	Science is taking up the challenge and offering solutions; but these need to 
be cost effective for industry to ensure up take.

Background
Humans have been creating images of animals since 
prehistoric times. Prehistoric paintings found in 
caves across Europe show clearly that early humans 
recorded images of the animals, and although there 
is considerable academic debate as to the purpose 
of the paintings, it might be suggested that the early 
humans were keen to record the shape and size of 
the animals that they were hunting.

With the growth and development of ‘modern’ 
agriculture, the recording of the size and shape of 
farm animals became more important, and more 
evident. In the nineteenth centaury, owners of prized 
livestock often commissioned paintings to show off 
the size and shape of their animals. 
 
While size and shape remain important to livestock 
producers today, other factors such as the health, 
efficiency and ease of management of the animals 
are also important. 

Modern farmers seek continually to improve both the 
quantity and quality of farm animals they produce. 
A key to sustainable improvement is measurement.
Dr H James Harrington said:

  

“ Measurement is the first step that leads to 
control and eventually to improvement. If 
you can’t measure something, you can’t 
understand it. If you can’t understand it, you 
can’t control it. If you can’t control it, you 
can’t improve it.”

Imaging technologies are already in use for making 
a number of measurements in farm animals, and 
have the major advantage over a number of other 
techniques in that they are non-destructive and 
in general non-invasive. So, if measurement is the 
key to control and thereby to improvement, which 
imaging technologies can be used for measurement, 
what are the future opportunities for imaging and 
where do challenges remain?

Current use of imaging
For breeders of farm animals, the production 
of viable offspring is essential. Here the use of 
ultrasound based imaging technologies has been 
established for a long time as a means of detecting 
pregnancy and predicting numbers of offspring 
to be born. More recently, the use of ultrasound 
techniques have allowed the detection of fetal 
movement which, in turn has been linked to the 
vigour of the newborn animal.
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The growth rate of farm animals is an important 
measurement which often involves considerable 
time, effort and handling of livestock. The use of 
video image analysis of live animals, such as applied 
in groups of pigs, allows continuous non-invasive 
monitoring of the key dimensions of the animals. 
The data captured allows the estimation of the 
growth rate of groups of pigs, shows the level of 
variability within and between groups and give 
some indication of the overall health of the animals. 

The health of farm animals can also be assessed 
to some extent using a direct imaging approach 
such as thermal imaging. The use of infrared 
thermography or thermal imaging can provide a 
means to measure temperature remotely and can 
be used to detect temperature in both the whole 
animal and in regions of the body. 

For producers and breeders of meat livestock body 

composition is important and a number of imaging 
based methods to assess body composition in live 
animals have been developed. Computed tomography 
or CT and Dual-Energy X-ray Absorptiometry 
or DEXA, use X-rays and image analysis, while 
magnetic resonance imaging uses magnetic and 
radio frequency fields and ultrasound scanning uses 
sound waves, to generate images which can be used 
to estimate body composition. There is a particular 
interest in the use of CT to replace some of the 
dissection based methods in pigs.

Imaging approaches, such as video image analysis, 
are also used to determine the composition 
and meat yield in carcases. Indeed, video image 
analysis, is now quite widely used in the EU as a 
means of replacing the manual classification of 
beef carcases using the EUROP grid.

 

Future Opportunities
The major benefit of imaging based approaches 

Figure 1. An image of a Steppe bison 
in the Altamira caves, Northern Spain 
painted more than 11,000 years ago in 
the Magdalenian period.

Figure 2. An image of a hog at 
Tidmarsh Farm (c. 1798)  
Source: English Museum of Rural Life

Figure 3. An image of the  
“Ketton Ox” by R. Pollard, (1801)  
Source: English Museum of Rural Life

Figure 4. Image depicting a  
Leicester Ram by R. Whitford, (1859)  
Source: English Museum of Rural Life
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Future Opportunities 

The major benefit of imaging based approaches is that 
they are non-destructive, non-invasive measurements 
and allow remote monitoring so can offer a number of 
future opportunities for imaging  
in farm animal species.

With regard to food safety, imaging technologies 
may offer a low cost opportunity to food processors 
to monitor contamination. For example, the EU 
programme Prosafebeef explored the opportunities 
for the use of dietary markers and imaging techniques 
for the detection of faecal contamination on carcases.

With regard to meat quality, recent developments 
have used a number of spectral techniques including 
near infrared spectroscopy, hyperspectral imaging, 
and raman spectroscopy to estimate the eating 
qualities of meat, particularly beef. Research progress 
in this area suggests that the prospect of being able to 
estimate eating and nutritional qualities of meat may 
not be too far away.

However there are also challenges ahead for farm 
animal imaging.

Future Challenges
Farm animal production and processing is both 
cost conscious and cost sensitive, so the costs of 
equipment and the labour required to operate it, 
represent major challenges. 

For the estimation of body composition in live 
animals, the need for anaesthesia is a particular 
challenge, as is the size of the equipment is not 
large enough to accommodate large farm species. 
It is also important to assess a wide range of breeds 
and cross breeds to provide useful information for 
breeders and producers. 

Estimation of live weight and growth rate needs 
to be carried out on an individual animal basis, so 
animal identity is important. A major challenge 
is to be able to use image based techniques in 
sheep where fleece growth and loss causes errors 
of estimation, and to be able to apply techniques 
equally well to animals kept outside as well as those 
housed inside.

In the assessment of carcase and meat quality, 
automation and integration into existing equipment 
and processes, which vary from business to business, 
is a very significant challenge.

Similarly, standardisation and validation of equipment 
and methodology throughout the EU will be an 
important challenge to address in the future. This 
is essential if these newer technologies are to 
show benefits for the farm animal production and 
processing industries. 

Figure 5. A Charollais bull and calf (photo courtesy of Darren Todd, SRUC)
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Besides the amounts of soft lean or fat tissue and 
bone mineral content (each in g), DXA provides a 
measure of bone mineral density (g/cm2).

The time required for a whole body scan of a 120 kg 
pig varies between <3 and 40 minutes depending 
on device generation and/or software settings and 
decreases from pencil through fan to cone beam 
scanners. Smaller (shorter) animals (probes) take 
less time than larger ones, because the area to be 
scanned is reduced – as long as the scan settings 
stay unchanged. For scans in vivo, a sedation or 
anaesthesia of the farm animals is necessary in all 
cases. The whole body/carcass composition estimate 
is available immediately after the scan is finished 
and does not need further manipulation of the scan 
image. Alone, a regional analysis is a little time 
consuming depending on the number and anatomical 
specification of the regions of interest. 

Value for industry

•	Dual energy X-ray absorptiometry (DXA) non-invasively provides data for 
fat mass, soft tissue lean mass, bone mineral mass and bone mineral density 
in different farm animal species like pig, sheep, cattle (calves), poultry, and 
others for body weights up to 240 kg (in vivo or post mortem).

•	New DXA machines provide rapid results and require minimum data analysis. 

•	The technology can be used for breeding or carcass classification purposes. 
Online measurements within the meat processing chain are possible. 

•	DXA compared with magnetic resonance imaging or computed tomography 
is very reasonably priced and provides a high output/cost ratio.

Body composition in farm animals  
by dual energy X-ray absorptiometry

A.M. Scholz1, P.V. Kremer1,2, R. Wenczel1, E. Pappenberger1 and M. Bernau1 

1. Ludwig Maximilians University Munich, Livestock Center, 85764 Oberschleissheim, Germany 
2. University of Applied Sciences Weihenstephan-Triesdorf, 91746 Weidenbach, Germany

Background
The determination of body and carcass composition 
by dual energy X-ray absorptiometry (DXA) is 
based on the different X-ray attenuation coefficients 
(R value) of a low and of a high energy X-ray 
spectral level for soft tissue and bone mineral. Soft 
tissue consists of fat and lean tissue, which can be 
distinguished for tissue not overlying bone – also 
based on different X-ray attenuation coefficients 
(Pietrobelli et al., 1996, Wang et al., 2010, Stone and 
Turner 2012). The amount of fat within the soft tissue 
is linearly related with the R value. The amount of 
soft lean tissue and fat tissue overlying bone results 
from the composition of the bone neighbouring 
pixels by assuming for the bone containing pixels an 
identical soft tissue composition as in the non-bone 
containing neighbour pixels. 

DXA provides a two-dimensional scan image of 
the whole body or regions of interest. A whole 
body or carcass scan image can be analysed totally 
or regionally by semi-automatically or manually 
defining regions of interest (Mitchell et al., 2002). 
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Why work is needed
Different generations of scanners offer a variety 
of solutions for the determination of bone 
mineralization and body/carcass composition 
measurements. Pencil beam scanners deliver a 
pixel-wise scan image, while fan and cone beam 
scanners deliver an area-wise scan image consisting 
also of separated pixels, either calculated by a 
software algorithm or measured directly by a linear 
or rectangular array of photon collecting sensors. 
The scan speed depends on the size and design of 
the photon collecting sensors, and different software 
or hardware settings like for example small animal, 
paediatric, or adult thin (quick), standard (normal), 
or thick (slow) modes. Therefore, DXA needs cross 
validation for transferring composition results among 
devices and software modes (Ruge 2006, Scholz et 
al., 2007, Lösel et al., 2010). Additionally, DXA as an 
indirect tool (Scholz and Mitchell, 2010) does not 
provide a measure of the lean meat percentage. It 
is necessary to determine the accuracy of DXA by 
reference dissection or chemical analysis. 

The methods used
DXA has been applied on a variety of farm animal 
species e.g. chicken: Mitchell et al., 1997, Swennen 
et al., 2004, Schreiweis et al., 2004, 2005; turkeys: 
Schöllhorn and Scholz 2007, Kreuzer 2008; pigs: 
Mitchell et al., 1996a,b, 1998, Suster et al., 2004, 
Hoffschulte and Scholz 2006, Bernau 2011, Kremer 
et al., 2012; sheep: Rozeboom et al., 1998, Scholz et 
al., 2010,; and calves: Scholz et al., 2003; Hampe et 
al., 2005; Musick 2007 or beef: Mitchell et al., 1997b, 
Ribeiro et al., 2011; as well as in the wool and meat 
industry: Bartle et al., 2004; Kröger et al., 2005.

First studies dealt with the accuracy and precision of 
DXA to predict carcass (Svendsen et al., 1993, Scholz 
et al., 2002, 2010) and body composition (Scholz 
and Förster 2006, Musick 2007, Kreuzer 2008, 
Scholz et al., 2010). 

The following results are all based on studies 
performed at the Livestock Center Oberschleissheim 
using a GE Lunar DPX-IQ pencil beam scanner. The 
software modus “adult normal” was used for the in 
vivo and carcass swine studies, while the pediatric 
large modus was used for the in vivo calf and sheep 
study. Calf and lamb carcasses were studied with the 
pediatric small modus. The lamb carcass included 
both body sides without head, while only one 
carcass half without head was used for the calf study 
(Figure 1). All turkeys (whole body after euthanasia) 
were scanned by using the pediatric small modus. 
Dissection served as reference for pigs, lambs, 
and calves, while chemical analysis provided the 
reference values for turkeys. 

The results obtained
Accuracy tends to be higher in pigs followed by 
poultry (turkey), sheep (lamb), and finally calves. 
Whole body analysis in sheep and calves in vivo 
is particularly strongly affected by the ruminant 
gastrointestinal tract leading to lower relationships 
between DXA body composition and reference 
measures (Tables 1 and 2). DXA is also able to discover 
(significant) differences in protein or energy among 
different treatments (e.g. breed, weight, food, gender) 
during growth (Mitchell and Scholz 2008). 
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Figure 1. Application of dual energy X-ray absorptiometry in farm animals 
(clockwise: calf, turkey body, calf carcass half, pig carcass half, lamb carcass,  
pig, sheep – in the middle DXA scan images (left: composite, right: soft tissue);  
all images from GE Lunar DPX-IQ or iDXA scanner in Oberschleissheim)
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Table 1. DXA carcass vs. dissection or chemical analysis (alone Turkeys). 

Table 2. DXA in vivo vs. dissection reference. 

Dissection/chemical*  
reference vs. DXA carcass

Pig 
(n=61) 

Lamb
(n=93) 

Calf 
(n=30) 

Turkey*
(n=100) 

FAT % R2=0.80 
√MSE=1.60

R2=0.73
√MSE=1.68 

R2=0.28
√MSE=0.90 

R2=0.74
√MSE=2.11 

FAT (g) R2=0.90
√MSE=359 

R2=0.83
√MSE=177 

R2=0.64
√MSE=179 

R2=0.86
√MSE=254 

Meat or Lean* %
              /Soft Lean (%) 

R2=0.70 
√MSE=1.89

R2=0.57
√MSE=1.76 

R2=0.53
√MSE=1.95 

R2=0.69
√MSE=2.33 

Meat or Lean* (g)
             /Soft Lean (g) 

R2=0.94
√MSE=848 

R2=0.88
√MSE=197 

R2=0.98
√MSE=329 

R2=0.99
√MSE=178 

BM/Bone (%) R2=0.24  
√MSE=0.64

R2=0.03
√MSE=1.48 

R2=0.24
√MSE=2.38 

R2=0.01
√MSE=0.39 

BMC/Bone (g) R2=0.73
√MSE=135 

R2=0.54
√MSE=127 

R2=0.77
√MSE=420 

R2=0.97
√MSE=27 

Weight (g) R2=0.91
√MSE=696 

R2=0.94
√MSE=535 

R2=0.99
√MSE=295 

R2=0.99
√MSE=124 

Dissectionvs. DXA in vivo Pig 
(n=61) 

Lamb
(n=93) 

Calf 
(n=30) 

FAT % R2=0.74  
√MSE=1.72

R2=0.51
√MSE=2.22 

R2=0.003
√MSE=1.06 

FAT (g) R2=0.89
√MSE=969 

R2=0.71
√MSE=229 

R2=0.42
√MSE=228 

Meat or Lean* %
              /Soft Lean (%) 

R2=0.65  
√MSE=2.08

R2=0.50
√MSE=1.88 

R2=0.09
√MSE=2.72 

Meat or Lean* (g)
             /Soft Lean (g) 

R2=0.82
√MSE=2377 

R2=0.57
√MSE=369 

R2=0.94
√MSE=617 

BM/Bone (%) R2=n.s  
√MSE=-

R2=0.05
√MSE=1.53 

R2=0.26
√MSE=2.34 

BMC/Bone (g) R2=0.73
√MSE=136 

R2=0.53
√MSE=129 

R2=0.84
√MSE=349 

Weight (g) R2=0.91
√MSE=696 

R2=0.70
√MSE=1158 

R2=0.98
√MSE=1396 
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The scientific conclusions
DXA carcass analysis leads to a higher relationship 
with dissection or chemical analysis than DXA in 
vivo (∆R2≥ 0.05 for lean meat% or fat%; Scholz et 
al. 2002, 2007, 2010, Scholz and Förster 2006, 
Musick 2007, Kreuzer 2008, Tables 1 & 2: all data 
from the GE Lunar DPX IQ in Oberschleissheim). 
The prediction accuracy is even higher for tissue 
masses (e.g. in sheep: Mercier et al. 2006, Pearce 
et al. 2009) and for higher body weights or wide 
body weight ranges (Mitchell et al., 1998, Mitchell 
and Scholz, 2009, Tables 1 & 2: all data from the 
GE Lunar DPX IQ in Oberschleissheim). Depending 
on the amount of fat in the carcass or in the body, 
and on the hardware or software settings, DXA may 
either overestimate or underestimate the amount 
of fat (lean meat) in comparison with the reference 
values from dissection or chemical analysis. 
Therefore species specific and/or even breed 
(genotype) as well as gender specific (regression) 
equations are necessary for an accurate prediction 
of the true body/carcass lean meat% or fat %.

Based on the latest developments, DXA can move 
closer to MRI and CT, though it is still not possible 
to get three dimensional scan images for body 
composition analysis in one step. New rotating 
C arm devices are the first step towards three 
dimensional information. The advantage of very 
low radiation exposure with pencil and partially 
fan beam scanners, however, will disappear with 
three dimensional DXA. Devices combining DXA 
and CT technology are already available as so 
called DECT (dual energy computed tomography) 
devices. Research is needed to verify the possible 
applications of latest generations DXA scanners 
and DECT scanners for farm animal imaging in 
abattoirs or performance testing.
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Background
In livestock production and research there has always 
been a great demand for techniques to determine 
body composition of live animals and carcasses. 
Performance tests of meat producing animals, 
investigations of growth patterns and influencing 
factors are very much based on such techniques.
In meat industry it is essential to evaluate carcasses 
in terms of lean meat and fat. Magnetic Resonance 
Imaging (MRI) is a development in medicine that has 
greatly enhanced the ability to visualize anatomical 
and pathological changes in vivo. MRI provides, 
without ionizing radiation, high contrast images 
of any desired plane.

The first whole body tomograph exclusively used 
for livestock science was installed in the Institute 
of Farm Animal Genetics in Mariensee in 1987 
and was used until 2006. This paper reviews own 
research projects concerning predominantly the 
determination of body composition and the analysis 
of growth curves in swine, sheep, and water fowl.

The method used 
MRI is a non invasive technique to acquire images 
of the body’s interior in any desired plane. The basic 
principle is that atomic nuclei with an odd number of 
protons or neutrons or both will absorb and reemit 
radio waves when placed in a magnetic field. This 
phenomenon is called nuclear magnetic resonance 
(NMR) and has been widely used by chemists 
during the last 60 years. Hydrogen has the simplest 
nucleus, a single proton. It is most abundant in the 
body tissues, and its magnetic moment is large, both 
factors causing protons to emit a strong NMR signal. 

This makes the hydrogen nucleus an attractive 
isotope for imaging. The MRI scanner used in the  
Institute of Farm Animal Genetics was a ‘BRUKER 
Medspec BMT 15/100’ whole body tomograph with 
a field strength of 1.5 Tesla. For acquisition of images 
with high contrast between muscle and fat tissue, 
a T1 weighted spin echo sequence was suitable. In 
a modified form, known as multi-slice multi-echo 
sequence, this method could generate adjacent 
slices with multiple echoes for each slice. The echoes 
provided information about the tissue specific 
relaxation of protons. By acquiring a set of parallel 
slices 3-D information of the body was delivered. 
The image matrix consisted of 256 rows and 256 
columns. The field of view (FOV) was chosen 
according to the size of the animal and ranged from 
260 x 260 mm to 460 x 460 mm, resulting in pixel 
sizes of 1.0 to 1.8 mm edge length. Slice thickness 
was set to 8 or 10 mm and slice distance to 16 or 20 
mm. Depending on the length of the animal up to 90 
parallel transverse images were necessary to cover 
the entire body. The measuring time for one set of 
7 slices with 3 echoes each was about 4 minutes 
including image reconstruction. On average, one 
pig or sheep per hour could be scanned.

In medicine, image analysis is primarily a visual 
inspection to distinguish morphological and 
physiological alteration while in animal science; the 
main interest is quantification of body tissues. Simple 
measures are linear and area measurements, well 
known from other techniques utilized for livestock 
production such as ultrasound. Extensive information 
is available by means of multivariate pixel 

Body composition  
of farm animals by MRI
U. Baulain

Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystr. 10, 31535 Neustadt, Germany 

Value for industry

MRI can be used to: 
•	Predict body composition.
•	Estimate carcass composition as an alternative to full dissection.
•	Provide a carcass grading reference in performance testing.
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classification like cluster analysis or Parzen window 
function. To prepare images for pixel classification, 
as a first step, regions of interest (ROI) were drawn 
to exclude those parts which did not contribute to 
lean and fat. The so masked images were analysed 
by the above mentioned classification methods. 
After multiplication by pixel size, the result obtained 
was muscle and fat area for each section or image. 
Applying the Cavalieri method volumes of muscle 
and fat tissue were estimated, not only for the whole 
body but also for its parts.

Animals have to be immobilized prior to scanning 
to avoid body movements. Motion artefacts can 
significantly reduce image quality. Animals have to 
breathe quietly but not very deeply, since strong 
breathing also causes motion artefacts.

The results obtained
In several experiments, methods for the estimation 
of body and carcass composition in pigs, sheep and 
water fowl were developed. Lean and fat content of 
German Landrace pigs of different weight groups (20, 
50 and 90 kg live weight) were determined. Animals 
were scanned at five positions in the body: shoulder, 
breast, loin, sirloin and ham. Following tomography, 
pigs were slaughtered and carcasses dissected into 
lean, fat and bone as reference. MRI images were 
analysed by the image processing procedure, including 
cluster analysis, as described above. Table 1 shows the 
accuracy of estimation. It is obvious that MRI delivers 
a precise estimation of weight of total lean and fat for 
every weight group. The accuracy was very high for 
the percentage of lean and fat in the ‘90 kg’ group, 
but reduced in the ‘20 kg’ group. This might be due to 
the fact that the animals investigated showed a small 
variation in these traits and tissue differentiation was 
difficult (Baulain and Henning 2001). 

Table 1. Accuracy of estimation of body composition in  
live pigs of different weight groups

R2: Coefficient of determination; SEE: Standard error of estimation

Table 2. Accuracy of estimation of body composition in 
live lamb of different weight groups

R2: Coefficient of determination; SEE: Standard error of estimation

Different meat type lambs and their crosses with 
Finn sheep were scanned to derive equations for 
predicting body composition. One group of lambs 
weighed less than 30 kg. The second group was 
made up of lambs weighing more than 30 kg. Total 
dissection of the left carcass side into lean, fat 

and bone served as reference. Prior to slaughter 
and dissection each sedated lamb was scanned 
at different regions of the body. The accuracy of 
estimation of body composition is indicated in  
Table 2. The coefficients of determination were at the 
same level as in the pig experiment (Streitz 1995).

                                            20 kg 50 kg 90 kg

R2 SEE R2 SEE R2 SEE

Lean (g) 0.91 190 0.96 265 0.89 612

Fat (g) 0.89 90 0.97 150 0.91 374

Lean (%) 0.55 1.46 0.83 0.92 0.87 1.19

Fat (%) 0.68 1.06 0.80 0.97 0.89 1.01

n = 43 n = 40 n = 60

Live wt. ≤30 kg Live wt. > 30 kg

R2 SEE R2 SEE

Lean (g) 0.96 160 0.91 261

Fat (g) 0.96 84 0.94 195

Lean (%) 0.78 1.57 0.91 1.60

Fat (%) 0.86 1.49 0.90 1.64

n = 49 n = 84
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Table 3. Correlations between muscle and fat volume in different water fowl 
species determined by means of MRI and total dissection

A direct measurement of the breast and leg muscle 
volumes as well as abdominal fat volume was 
accomplished in water fowl. The volumes were 
determined by acquisition of adjacent transverse 
sections covering the entire length of the body. 
Applying the Cavalieri method it was possible to 
estimate the volumes with a high accuracy compared 
to the results of total dissection. Correlations between 
breast muscle volume and dissection weight, 
calculated between species and sex, ranged from r = 
0.95 to 0.97 (Table 3) (Wiederhold 1996).
An essential requirement in studies on growth and 

development is a precise determination of body 
composition at different stages during the growth 
period. The most accurate method is manual carcass 
dissection into lean, fat and bone. To quantify tissue 
growth, stepwise slaughter of animals differing 
in age or body weight had to be carried out. But 
procedures which can be applied to animals are 
preferable. Based on cross-sectional MR images, 
tissue composition of growing pigs and lambs 

Figure 1: Muscle and fat growth of two MHS-genotypes (NN and Nn) in intensive 
and restricted fed pigs (n = 72)

Table 4. Accuracy of carcass lean estimation in different pig breeds  
and crossbreed types

R2: Coefficient of determination; RMSE: Root mean square error, CV = RMSE/mean

were examined. From figure 1 it is evident that 
muscle growth of 72 intensively or restrictedly fed 
pigs of two malignant hyperthermig syndrome 
genotypes was not influenced by feeding system, 
while fat growth of intensively fed barrows was 
significantly higher in the finishing phase. Between 
MHS genotypes, no significant differences in tissue 
growth were found. Only in tendency, NN genotypes 
had a higher fat growth than Nn genotypes in the 
finishing phase (Kusec et al., 2007).
Furthermore MRI proved to serve as a carcass 
grading reference in pig performance testing. 

A total of 202 pigs originating from stationary 
sibling and progeny performance test were taken to 
estimate lean and fat in two commercial crossbreed 
lines (Pi x Westhybrid and db.65 x db.classic), as well 
as purebred Piétrain (Pi), German Yorkshire (LW) 
and German Landrace (LR) pigs. Left carcass sides 
were scanned by MRI. Based on the series of images 
muscle and fat volumes of the whole carcass and 
virtual cuts were estimated. A full dissection of the 

Species n Breast muscle Leg muscle Abdominal Fat

Peking duck 68/63/73 0.96 0.87 0.78

Muscovy duck 68/70/64 0.97 0.97 0.82

Mulard 78/77/73 0.98 0.84 0.84

Goose 72/70/64 0.96 0.80 0.84

Piétrain LW/LR Pi*Westhybrid db.65*db.classic

R2 0.97 0.96 0.97 0.97

RMSE (kg) 0.43 0.46 0.59 0.62

CV 1.63 1.97 2.22 2.33

n = 19 n = 36 n = 74 n = 73
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Figure 2.  
MR images of a 
live turkey’s breast 
(transverse and 
sagittal view)

The scientific conclusions

One of the main breeding goals in livestock production is the optimization of body composition under 
various genetic and environmental conditions. Consequently, there is a great demand for methods of 
determining tissue composition in live animals, carcasses and retail cuts. Medical imaging techniques are 
very suitable for this purpose. For field or on farm use robust and simple imaging equipment is essential,  
but advanced techniques are available for research. Ultrasound is most attractive for livestock production, 
where it has been used for several decades. MRI is another option as described above, but costs and 
complexity has limited its use. 

The next steps
To date, MRI has been used mainly as a research tool, especially for determination of body composition and 
investigation of individual growth patterns. Future use should focus on diagnosis of production diseases, 
since current breeding goals include new traits of animal health and welfare. Furthermore, exact phenotypic 
measures of individuals are absolutely required for e.g. molecular genetic studies and characterization and 
evaluation of genetic resources. 
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carcass sides according to the EU-method served as 
reference. The accuracy of muscle weight estimation 
is shown in Table 4 (Baulain et al., 2010).

In addition to the traits regularly acquired in 
performance testing, carcass composition of 150 
lambs was determined by MRI. Breeds were German 
Blackface, German Meat Merino, Leine Sheep, Bleu 
du Maine and Suffolk. Differences in carcass quality, 
based on conformation score and volumetric MRI, 
were ambiguous. Correlations between muscle 
volume measured by MRI and muscle scores ranged 
from 0.4 to 0.5 (Baulain et al., 2011). MRI as a 
reference technique to estimate carcass composition 
can be applied instead of full dissection, when i.e. 
new measuring techniques or measuring sites have 
to be evaluated for its benefit in performance test.

In addition to the prediction of body composition, 
MRI can also be utilized to describe morphologic 
structures and pathologic changes. The quality of 
the images allows the identification of morphological 
abnormalities caused by particular housing 
conditions or diseases. An efficient use of MRI 
images for diagnostic purposes needs experience 
and guidance. For the anatomical orientation within 
the MR images and for the identification of organs 
and tissues, anatomical atlases are helpful  
(Figure 2) (Schulte Spechtel et al., 1997).
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The use of computed tomography in 
small animal breeding
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Cs. Hancz, R. Romvári and P. Horn
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Value for industry

•	By means of computed tomography (CT) the body composition of the 
animals could be determined in vivo (on living animals).

•	Using this technique in the selection of breeding animals, the dressing out 
percentage (meat production) of the offspring could be improved.

•	By following changes in the body composition of the animals in vivo, the 
optimal slaughter age could be determined.

•	By means of the CT, differences in the body composition of different breeds 
and sexes could be detected.

•	Using this technique, the effect of different diets and/or other treatments on 
the volume and structure of different tissues could be detected.

•	By the in vivo determination of egg yolk content, the hatchability of the 
eggs and the viability of the hatched birds could be improved.

Background
Computed tomography (CT) has been used for 
animal science since the early 1980s. In the past 
it was used for the in vivo determination of body 
composition and meat quality in various animal 
species. In this paper, the use of this technique in 
small animal breeding is reviewed.

Why work is needed
By reviewing the main fields and results of the use 
of computed tomography in small animal breeding, 
some recommendations will be given for its  
practical use.

The results obtained
In the case of chicken, computed tomography was 
mainly used for the determination of changes in 
the body composition during the rearing period 
(Bentsen and Sehested, Andrássy-Baka et al., 2003). 
These experiments focused on the determination of 
the volume of the muscle and fat.

Beside following the changes in the body 
composition of the birds, differences in the body 
composition of different genotypes were also 
examined at given ages (Almási et al., 2012). In these 
comparisons, three-dimensional histograms were 
sometimes used to demonstrate the differences 
between different body parts and/or at given 
anatomical points.

In special cases, three-dimensional reconstructions 
were also used for the comparison of the body 
composition of the different genotypes to 
demonstrate the differences in the volume and 
structure of different tissues (Figures 1-4).
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Figure 1. Breast muscle of a 5-week-old 
Arbor Acres meat-type chick

Figure 3. Breast bone of a 5-week-old 
Arbor Acres meat-type chick

Figure 2. Breast muscle of a 20-week-
old Tetra SL laying hen

Figure 4. Breast bone of a 20-week-old 
Tetra SL laying hen

In laying hens, CT was used for following changes 
in the body fat content during the first egg laying 
period. In the experiment of Milisits et al., (2010) it 
was pointed out that the body fat content increased 
till 44 weeks of age and it stagnated thereafter both 
in the brown and white egg layers. 

Changes in the body composition of laying hens 
were monitored also during the moulting period by 
CT (Romvári et al., 2005). In this study, the decrease 
in the amount of muscle and fat was demonstrated 
during the forced moulting period and their 
regeneration after a 3 week recovery period.

In connection with laying hens, CT was used also for 
the in vivo determination of the egg composition. 
However, in the study of Milisits et al., (2009) 
it was established that the albumen and yolk 
are not separable based on their X-ray density 
values, because of their overlapping values on the 
Hounsfield-scale. The determination of the surface of 

the yolk on the CT images (Figure 5) resulted in 70% 
accuracy in the prediction of egg yolk ratio.

Figure 5. Determination of the surface of 
egg yolk on cross-sectional CT images
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Milisits et al., (2010) observed that the body fat 
content of the hens and the yolk ratio of the eggs 
changed parallel during the first egg laying period. 
Between these two traits positive and significant 
correlations were obtained both in the brown and 
white egg layers (r=0.401 and r=0.469, respectively).

In the case of laying hens, CT was used also for the 
determination of the density, breaking strength and 
Ca content of the bones (Streubel et al., 2005, 
Tossenberger et al., 2011). The study of Tossenberger 
et al., (2011) demonstrated how the diet’s 
composition affects the X-ray density values (i.e. the 
composition) of the bones. The results of this 
experiment also pointed out that the Ca content of 
the bones can be predicted with about 60% 
accuracy based on their average Hounsfield values.

In the case of turkeys, CT was used also for following 
changes in the body composition of different 
genotypes during the rearing period (Brenoe and 

Kolstad, 2000). Another interesting study in this 
species was carried out by Petneházy et al.,  
(2009) who determined the body composition and 
cardiovascular capacity of two different genotypes 
using CT and magnetic resonance imaging.

A special use of CT was undertaken for the 
preparation of a cross sectional anatomy atlas  
of the turkey (Petneházy et al., 2012).

In the case of geese, CT was used for following 
the changes in the volume and composition of the 
liver during the force feeding period. In the study 
of Locsmándi et al., (2005), three-dimensional 
reconstruction of the liver was used to demonstrate 
the increase in its volume during the force feeding 
period and its devolution thereafter (Figure 6).  
This experiment also pointed out, how the increased 
fat content of the liver affected the X-ray density 
values of this organ

In rabbits, CT was mainly used in the selection of 
breeding animals for improving the dressing out 
percentage of the offspring (Szendrő et al., 1996). 
The selection was based first on the surface of  
M. longissimus dorsi and later also on the volume  
of the thigh muscle.

Using three-dimensional histograms, changes in 
the amount of body fat reserves during pregnancy 
and lactation were also demonstrated (Milisits et al., 
1999). This study also pointed out that the decrease 
in the body fat reserves of the does can be observed 
only in the last third of pregnancy.

Figure 6. Changes in the volume of goose liver during the rearing (1-2), force 
feeding (2-5) and devolution period (5-6) (1, 2, 3, 4, 5, 6 = 11, 15, 16, 17, 18 and 20 
weeks of age, respectively).

1 2

5 6

3 4
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A special use of CT was in the prediction of milk 
production of the rabbit does (Donkó et al., 2008). 
In this case, the volume of the mammary gland was 
determined before and after nursing, while the milk 
production was predicted based on the calculated 
differences. The applied method seems to be 
suitable for estimating milk yield depending on the 
location of the pair of glands.

Computed tomography was also used for predicting 
the body composition of fish. In the study of Romvári 
et al. (2002) the body fat and protein content was 
predicted with high accuracy.

The scientific conclusions
Based on the results, it was concluded that 
computed tomography seems to be a useful and 
efficient tool in a wide range of small animal 
breeding and production.

The next steps
The next step should be to broaden the use of 
this technique in the practice.
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Value for industry

• Computed tomography (CT) is a non-invasive imaging technology, which 
can be used on live animals (in vivo) and on carcasses or primal cuts (post 
mortem).

• CT provides rapid, precise and accurate measurements or predictions of the 
weights of the three main tissues in meat animals: meat, fat and bone with 
accuracies (R2-values) of 0.99, 0.98 and 0.89, respectively or even higher 
when spiral CT is used.

• CT can also provide measurements such as; number of vertebrae which 
relates to the numbers of chops, the muscle density which is indicative for 
the intramuscular fat a major indicator of taste of meat and possibly for 
tenderness. CT also provides data on conformation and muscularity, bone 
density and pelvic dimensions, with the latter being probably indicative for 
dystocia and birth difficulties. 

• CT scanning can provide the above described data on animals from a wide 
range of body weights (from mice and fish of about 30-50g, to chickens, 
rabbits, sheep and pigs with live weights of up to ca. 150 kg); the scanning 
process takes between 20 seconds up to 4 minutes.

• CT measured traits have moderate to high heritabilities permitting high 
selection responses and allow relaxation of the selection on CT traits to focus 
more on health and welfare traits. CT is a valuable tool as a benchmarking 
system and as integrated part of the breeding system.
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Background
Although the main focus of CT based research 
work and commercial scanning at SRUC is on sheep 
(from 2000-2012 over 6000 lambs have been CT 
scanned), CT has also been used on other animals 
(from smaller model animals to various farm animal 
species) and its application in a longitudinal study 
on pigs will be described below as an example. This 
work was part of a larger project aiming to test the 
effects of low protein rations, with or without amino 
acid (AA) supplementation, on the performance and 
body composition changes of growing pigs of a lean 
commercial genotype (Bünger et al., 2012). The main 
goals of this paper are to demonstrate in the FAIM 
context the use of CT in such longitudinal studies.

The European nitrate directive and increasing cost 
of protein sources are leading farmers to reduce 
the nitrogen content in livestock feed. UK pig 
production often employs feeds with relatively high 
protein levels to ensure high growth rates and low 
fat deposition, which are associated with undesired 
higher N-excretion. The aim of this work was to 
compare the performance of pigs of a lean genotype 
subjected to a conventional (C) feeding regime (FR) 
or one of two low protein FR (LP), supplemented 
with essential amino acids (AA) (LP1) or not (LP2). 
Performance was measured in terms of growth, 
feed intake, N-excretion/ N-retention and body 
composition with the latter measured repeatedly 
via CT and finally by slaughter.

Why work is needed
Research has shown that dietary protein can be 
reduced in the final stages of growth with only minor 
adverse effects on growth rate and feed conversion 
efficiency (Kerr and Easter, 1995; Le Bellego et al., 
2002), so long as dietary essential AA intakes and 
net energy (NE) are maintained. However, at the 
lowest levels of protein, a tendency to increased 
fatness has been observed (e.g. Canh et al., 1998; 
Kerr and Easter, 1995). The effects of low protein 
diets are expected to be greater the leaner the 
genotype (Wood et al., 2004).

The pattern of fat deposition in finishing pigs is 
important (Wood, 1984; Kouba et al., 1999; Kouba 
and Sellier, 2011). Fat deposited in subcutaneous 
depots is unwanted, leading to increased 
requirements for fat trimming at the abattoir and 
a reduction in the price paid to the producer. 
However, intramuscular fat (IMF) has potential 
sensory benefits for meat quality, so deposition of 
fat within the muscle could enhance product quality 
(Teye et al., 2006). Fat deposition can also occur 
within the body cavity, around internal organs.  
 
 

Although this has little influence on carcass quality, 
deposition of internal fat does affect the efficiency 
of growth and meat production. Information about 
partitioning of fat between body depots is usually 
gained from dissection studies, which are time-
consuming and expensive, as meat cannot be 
returned to the food chain.

The methods used
CT scanning has the ability to describe and follow 
the changes in whole body composition across time 
in live animals, in a non-invasive and non-destructive 
manner (Bünger et al., 2011). This imaging technique, 
and associated image analysis methods, can also 
identify and quantify fat in different depots. CT 
research in sheep has shown that fat in different 
carcass and internal depots can be accurately 
quantified in ewes (Lambe et al., 2003) and lambs 
(Lambe et al., 2006; Young et al., 1996) using 
information from a small number (3-5) of cross-
sectional reference scans taken at set anatomical 
positions along the length of the body in prediction 
equations. However, breed or line specific calibration 
trials are required, to relate reference scan data to 
dissected tissue weights, to derive these prediction 
equations, and such equations become less reliable 
as genotypes change due to selection. This is a 
greater issue in pig breeding, where a faster rate of 
genetic progress is achieved compared to sheep 
breeding. Alternatively, many cross-sectional CT 
scans can be taken at regular intervals (usually at 
8 mm distance) along the length of the body and 
total volumes of different body tissues can then be 
estimated (Roberts et al., 1993). Using tissue density, 
tissue volumes can then be transformed into very 
accurate tissue weights. 

Pigs were weighed on arrival and allocated randomly 
to pens and treatments, so that the average live 
weight on each treatment was as similar as possible. 
To enable growth rates to be calculated, all pigs 
were weighed weekly. Pigs were CT scanned three 
times, at an average weight of 60kg (scan 1), 85kg 
(scan 2) and 115kg (scan 3), following administration 
of a general anaesthetic, to minimise stress and 
movement during the scanning process. Food 
was withdrawn overnight prior to CT (for < 24h) 
to reduce gut fill. The study found no effect of CT 
scanning, including food withdrawal, on growth rate 
and feed intake. All procedures involving animals 
were approved by the SRUC animal ethics committee 
and were performed under UK Home Office licence, 
following the regulations of the Animals (Scientific 
Procedures) Act 1986. Altogether, the pigs were on 
the experiment for 73 to 88 days, depending  
on batch.
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The results obtained
Pigs on LP2 had lower LW and average daily weight 
gain (ADG) at key stages and higher feed conversion 
ratio (FCR) than pigs on C or LP1 from the point 
where all pigs reached an average of 60 kg LW 
onwards. The growth curves for C and LP1 animals 
were very similar to each other, and overall the 
results confirm that the LP1 strategy allows growth 
performance similar to the C FR. The N-intake 
during the trial was 11% lower in LP1 than C and 
16% lower in LP2. CT scan data, which enabled the 
calculation of N-retention and excretion over the 60 
to 115 kg period, showed that the LP1 FR can reduce 
N-excretion by about 17% in comparison with FR C, 
without compromising growth performance, however 
FCR was significantly poorer (-6%) in LP1 compared 
to FR C.

In vivo CT measurements agreed well with sample 
joint (fore loin) dissection results after slaughter  
for the main carcass tissue weights (fat r = 0.88; 
muscle r = 0.71; bone r = 0.48) and proportions  
(fat% r = 0.92; muscle% r = 0.79; bone% r = 0.32 

with the lowest correlations for the bone traits. 
CT-measured muscle density was a good predictor 
of intramuscular fat (r = 0.71). Pigs on the C and 
LP1 diets did not differ significantly in composition 
during growth. However, pigs on the LP2 diet had 
significantly more fat (in carcass, internal and 
intra-muscular depots) and less muscle, from 85 kg 
onwards. Although total fat levels differed depending 
on diet (LP2 > others), proportions of fat in different 
body depots were not affected.

The slaughter results confirmed that FR LP2 
produced fatter pigs in terms of subcutaneous, 
intermuscular and intramuscular fat (IMF),  
the latter measured in longissimus and 
semimembranosus. The percentage of 18:2n-6 fatty 
acids was lower and that of 18:1n-9 was higher in IMF 
from LP2 pigs. Pigs in FR LP1 had more longissimus 
IMF than C, with a different fatty acid composition 
but total fat deposition was similar in these 2 groups. 
The high IMF content in LP2 produced more tender, 
juicy steaks.

Figure 1. Application of CT scanning in pigs (experimental pigs before scanning; 
the CT scanner at SRUC (Siemens, SOMATOM Esprit); anaesthetized pig in CT 
scanner, examples for cross sectional images of which for example from this 
pig 155 were taken; 3D reconstruction of the carcass relevant parts of the pig 
using all 155 images, changing the threshold makes the skeleton visible, the pig 
wakening up from anaesthesia).
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The scientific conclusions

•  Nitrogen excretion/retention
A reduction of nitrogen excretion was successfully 
achieved by supplying the pigs with low protein 
rations, however only LP1 had an N retention 
comparable with the C group. Substantially lower 
excretion values on the LP1 diet can be achieved 
without compromising the growth performance; 
but, looking at the whole trial period, the feed 
required for an LP1 animal to produce a LW gain 
of 1kg was 6% more than that required for a C 
pig. Given however, that FCR has a moderate 
heritability, and considering that these pigs are 
probably adapted to C-like diets, there seems to be 
an opportunity for the use of genetic selection to 
counterbalance the decrease in efficiency on LP1.

CT can give accurate estimates of tissue 
proportions and distribution across the growing 
period in individual animals

-  Fewer animals required in growth studies 
compared to serial dissection

-  Higher accuracy than serial dissection – same 
animals followed through growth

-  Prediction of important meat quality indicators in 
vivo is possible

•  In vivo CT predictions of IMF
Most note-worthy is the association between IMF 
and CT muscle density in live pigs, as has been 
found previously in sheep in other SRUC research. 
Correlations of around 0.7 suggest that CT can 
predict this important meat quality trait in vivo with 
good accuracy. Very few accurate in vivo predictors 
of meat quality are available, so this result is of 
great interest. Despite a low coefficient of variation 
for CT-measured muscle density (< 3% at each 
scan), significant differences could still be detected 
between treatment groups in these pigs where

IMF levels were very low across the population 
(mean 1.2%, range 0.6 to 2.7%). These results 
suggest great potential for CT to provide both 
valuable carcass composition and meat quality data 
for live selection candidates within pig breeding 
programmes.

The increases IMF, in pigs fed the LP2 diet at the 
85 kg and 115 kg scans, imply that IMF levels can 
be manipulated by altering protein and amino 
acid levels in the feed. This would give potential 
to increase eating quality of the meat, but this 
would be associated with an increase in fat in other, 
unwanted, depots. A more targeted approach to 
maintaining or increasing IMF, whilst reducing fat in 
other carcass and internal depots, would be through 
genetic or genomic selection. Although genetic 
correlations between IMF and other fat depots, such 
as subcutaneous fat, are positive, they tend to be 
only moderate in size in pigs, indicating a potential 
to select for fat in one depot and against fat in 
another. However, whilst payments to producers 
are based on the current policy, which penalises 
subcutaneous fat and does not reward meat quality, 
incentives for adopting such breeding strategies are 
low.

The next steps
•  Further studies should aim to investigate the 

best predictor or combination of predictors 
from spiral CT scan images information of 
intramuscular fat percentage

•  Optimised predictors should be measured on a 
powerful pedigreed sample of pigs to estimate 
robust genetic parameters and then incorporated 
into a breeding program

Acknowledgements
This was a Sustainable Livestock Production LINK 
project funded by Defra, BPEX, QMS, JSR Genetics, 
Tulip, ABN and Forum Products. Many thanks to 
the technicians at the SRUC CT unit for running the 
experiment, for their special efforts to analyse all CT 
images and for their data collection. Thanks also to 
technicians at the University of Bristol for their help 
in dissection data collection.



28

References
Bünger L, Lambe N, McLean K, Cesaro G, Walling 
G, Whitney H, Jagger S, Fullarton P, Penglington 
N, Maltin C, Bayntun J, Wood J (2012). Effects of 
low protein diets on lean genotype pigs – Growth, 
feed/N intake and fat indicators. Acta Agriculturae 
Slovenica, ISSN 1854-4800 Suppl.3.

Bünger L, Macfarlane JM, Lambe NR, Conington J, 
McLean KA, Moore K, Glasbey CA, Simm G (2011). 
Use of X-ray computed tomography (CT) in UK 
sheep production and breeding. In CT Scanning – 
Techniques and Applications (ed S Karuppasamy), 
pp. 329-348. INTECH Open access Publisher.

Canh TT, Aarnink AJA, Schutte JB, Sutton A, 
Langhout DJ, Verstegen MWA (1998). Dietary protein 
affects nitrogen excretion and ammonia emission 
from slurry of growing-finishing pigs. Livestock 
Production Science, 56, 181-191.

Kerr BJ and Easter RA (1995). Effects of Feeding 
Reduced Protein, Amino Acid-Supplemented Diets 
on Nitrogen and Energy-Balance in Grower Pigs. 
Journal of Animal Science, 73, 3000-3008.

Kouba M, Bonneau M, Noblet J (1999). Relative 
development of subcutaneous, intermuscular, and 
kidney fat in growing pigs with different body 
compositions. Journal of Animal Science, 77, 622-629.

Kouba M and Sellier P (2011). A review of the factors 
influencing the development of intermuscular 
adipose tissue in the growing pig. Meat Science, 
88, 213-220.

Lambe NR, Conington J, McLean KA, Navajas EA, 
Fisher AV, Bünger L (2006). In-vivo prediction of 
internal fat weight in Scottish Blackface lambs, 
using computed tomography (CT). Zeitschrift Für 
Tierzüchtung Und Züchtungsbiologie-Journal of 
Animal Breeding and Genetics, 123, 105-113.

 
Lambe NR, Young MJ, McLean KA, Conington J, 
Simm G (2003). Prediction of total body tissue 
weights in SBF ewes using computed tomography 
scanning. Animal Science, 76, 191-197.

Le Bellego L, van Milgen J, Noblet J (2002). Effect 
of high temperature and low-protein diets on the 
performance of growing-finishing pigs. Journal of 
Animal Science, 80, 691-701.

Roberts N, Cruzorive LM, Reid NMK, Brodie DA, 
Bourne M, Edwards RHT (1993). Unbiased Estimation 
of Human-Body Composition by the Cavalieri 
Method Using Magnetic-Resonance-Imaging. Journal 
of Microscopy-Oxford, 171, 239-253.

Teye GA, Sheard PR, Whittington FM, Nute GR, 
Stewart A, Wood JD (2006). Influence of dietary oils 
and protein level on pork quality. 1. Effects on muscle 
fatty acid composition, carcass, meat and eating 
quality. Meat Science, 73, 157-165.

Wood JD (1984). Fat deposition and the quality of 
fat tissue in meat animals. In Fats in Animal Nutrition. 
(ed J Wiseman), pp. 407-435. Butterworths, London.

Young MJ, Nsoso SJ, Logan CM , Beatson PR (1996). 
Prediction of carcass tissue weight in vivo using live 
weight, ultrasound or X-ray computed tomography 
measurements. Proceedings of the New Zealand 
Society of Animal Production, 56, 205-211.



29

Overview of the technical 
characteristics of systems  
predicting carcass, meat eating 
and nutritional quality of meat
D.W. Ross1, C.R. Craigie2, N. Lambe1, J.J. Hyslop3, E.A. Navajas1*, N. Prieto1*,  
I. Richardson4, L. Bünger1, C-A. Duthie1, C.A. Maltin2 and R. Roehe1

1. SRUC Research Division, RIB, Easter Bush, Penicuik, Midlothian, EH25 9RG
2. Quality Meat Scotland, The Rural Centre, Ingliston, Edinburgh EH28 8NZ
3. SAC Consulting Ltd, Bush Estate, Penicuik, Midlothian, EH26 0PH
4. Division of Food Animal Science, Langford House, Langford BS40 5DU 
*Former staff at SRUC, who have been working on our meat quality projects

Value for industry

•	Ultrasound and live animal video image analysis (VIA) methods can contribute  
to more accurate prediction measures of carcass quality.

•	Carcass VIA systems are now used commercially and offer additional advantages 
in providing yield information as well as classification.

•	Objective tenderness measures associate with trained sensory panel scores and 
provide a cost-effective and quick method for assessing (arguably) the most 
important quality parameter.

•	Spectroscopic systems that provide estimates of meat sensory and nutritional 
quality, can be deployed in the abattoir or meat processor and operate on-line, 
and at line speed.

Background
It is possible to perform a range of measurements on 
both live animals and carcass/primary meat products 
to assess carcass, meat eating and nutritional quality. 
Some of these are feasible to be implemented in a 
commercial on-line environment and show promise 
in estimating the range of quality parameters that 
could relate to, and inform, the value chain. A range 
of techniques employed to assess meat and carcass 
quality, are herein described, and are capable of use 
in an on-line or commercial environment.

Why the work is needed
In response to industry demand, a number of options 
have been tested for performance and capability 
for measurement of meat and carcass quality in our 
recent studies. These include measures from both 
carcasses and live animals to obtain yield and quality 
measures. Details on the technical specifications, 
if not outlined in this paper, are contained in the 
associated paper references.



30

Methods and results
On the live animal, techniques such as imaging 
ultrasound to estimate intra-muscular fat and carcass 
yield have been developed. Lambe et al., (2010) 
showed that measurement of fat and muscle depths 
by extracting dimensions from acquired ultrasound 
images taken at the start and end of a finishing 
period, in combination with live-weights, provided 
good estimations of carcass muscle and fat yields 
(R2 = 0.81 and 0.84, respectively). Image analysis 
techniques applied to serial sequences of ultrasound 
images have revealed reasonable relationships with 
intra-muscular fat content (R2=0.48), even at low 
levels of intramuscular fat (Glasbey et al., 2012). 

Imaging systems have been applied to live animals 
to estimate both live-weight, and predict carcass 
classification and yield parameters of beef animals  
with some success. A recent study showed that  
carcass weight could be estimated accurately with  
an R2 of 0.93 (Hyslop et al., 2009). 

Images of top, profile and rear of animal were 
gathered automatically in commercial conditions. 
Other carcass measures could also be predicted with 
reasonable precision, such as sirloin weight 
(R2 = 0.85). Carcass-based video image analysis 
(VIA) systems are now commercially applied in 
various territories and offer advantages in prediction 
of yield, as well as carcass classification. These 
systems gather images of carcasses on-line, and 
some use structured light to interpolate three-
dimensional morphology. A number of trials have 
been conducted to assess the performance of 
these systems. VIA machines, trial references and 
performances obtained are summarised in tables 1 
and 2 below.

VIA machine reference Manufacturer

BCC2 Carometec A/S, Denmark

VBS2000 E+V GmbH, Germany

MAC Normaclass, France

VIAScan Cedar Creek, Australia

CVS whole carcass camera system RMS USA

Table 1. VIA machine models and manufacturers

Table 2. VIA reported performance studies

Trial
Machine  
designation

Performance

Sorensson et al., (1988) BCC1 LMY R2 = 0.73, fat R2 = 0.77, bone R2=0.79

Eldridge (1994),  
Ferguson et al., (1995)

VIAScan Meat yield (kg) R2 = 0.98 (with fat depth measure)

DMRI (1996) BCC2 Conformation R2 = 0.90; fat R2 = 0.63

Sonnichsen et al., (1998) VBS2000 Conformation R2 = 0.91; fat R2 = 0.83  

Lebert et al., (2000) MAC Conformation R2 = 0.93; fat R2 = 0.68

Allen et al., (2000) Multi-machine Within 1 sub-class R2 = 0.91 – 0.97; fat R2 = 0.72 – 0.80
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In addition to the details outlined above, Craigie et 
al., (2010) identified high value primal predictions 
using VIA input variables, not to be significantly 
better that grader. However, Pabiou et al., (2011) 
found good associations between VIA data and low, 
medium and high value cuts. For example, high value 
cut weight predictions were considered very good 
(R2 = 0.93). All the above studies relate to cattle. 
A VIA study in sheep, reported by Rius-Vilarrasa et 
al., (2009; 2010), showed better precision than the 
grader for predicting primal cuts (86-99% accuracy), 
with very good repeatability (up to 99%).

Ross et al., (2009) showed that objective 
measurements relating to tenderness could estimate 
the prediction of scientific sensory panel scores. 
For some types of measure, the prediction was 
enhanced by assessment at 72 hours post-mortem 
compared with at 14 day maturation, with correlation 
coefficients of 0.6 and 0.47 respectively.

Commercial exploitation of these types of techniques 
have been facilitated by the introduction of an 
industry-deployable robust and portable, multi-test 
instrument the ‘Tenderscot’ (www.pentlandprecision.
co.uk/page.php?id=99). This instrument is set up to 
carry out Warner-Bratzler, MIRINZ bite and Rapid 
Slice Shear tests in alternative configurations.

It is possible to deploy certain spectroscopic 
measurement systems, such as visible and near 
infra-red reflectance spectroscopic surface probes, 
in the processing chain to estimate a range of 
sensory and nutritional characteristics. These 
systems can include measuring the reflected optical 
spectrum of a controlled, illuminated meat surface 
via a fibre optic guide. Results of trials on these 
systems are reported in another paper (Roehe et al.,) 
published in this same proceedings. 
 

 

The scientific conclusions  
and next steps 
There are a range of technological systems that 
can usefully inform on carcass and meat quality, 
throughout the production chain from farm to the 
abattoir (post-mortem). Studies to validate these 
systems in commercial conditions are now needed 
to show robustness of performance in different 
commercial settings.

The Quality Meat Scotland and Scottish 
Government funded Integrated Measurement of 
Eating Quality project aims to assess the viability 
of a range of these techniques when applied to a 
robust, on-line environment. These techniques

include autonomous, robotic-based probe systems, 
capturing data on meat and carcass quality 
parameters. These systems have been recently 
demonstrated to operate and gather data at fast 
commercial rates. (Figure 1 right), and are therefore 
suitable for future development and refinement to 
fully automated commercial systems. 

A range of alternative spectroscopic systems 
for non-destructive evaluation of meat sensory 
and nutritional properties are being tested and 
are showing promise for on-line implementation. 
However, it is likely that there will be a need for 
further refinement, and robustness testing in a 
range of commercial environments.

Figure 1. Autonomous robotic arm concept applying probes on-line to carcass line
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Value for industry

•	Visible-near infrared (NIR) spectra from lamb M. longissimus lumborum (LL) 
showed some promise for predicting intramuscular fat percentage in that muscle.

•	NIR spectra collected on the LL had a limited ability to predict Volodkevich 
shear force (RPDpred = 1.17) or MIRINZ shear force (RPDpred = 1.33). Models were 
unable to correctly identify all samples with shear force values > 5.5 kgF.

•	Shear force traits in M. semimembranosus (SM) could not be predicted by  
NIR spectra collected on the LL.

•	NIR was unable to predict pHult of LL or SM.

•	These results were obtained on experimental lambs under controlled 
experimental conditions; future experiments should investigate NIR  
performance under commercial operating conditions.

•	This research showed that cross validation methods underestimate the  
standard error of prediction for all traits.

Investigations into relationships  
between visible-near infrared (NIR) 
spectra and instrumental meat quality 
parameters in lamb M. longissimus 
lumborum and M. semimembranosus
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Background
The ability to measure some meat quality traits 
as lambs are processed would give processors 
the ability to supply customers on a meat quality 
basis and to reward farmers who produce superior 
lambs with superior meat quality characteristics. 
Meat quality information, if made available to 
sheep breeders, would allow breed improvement 
strategies to select for meat quality traits aligned 
to customer requirements. 

The ability to measure safely lamb meat quality 
in a non-destructive and cost-effective way is an  

 
important prerequisite of any system intended 
for industry application. Visible-near infrared 
spectroscopy (NIR) meets these criteria, and has 
shown some promise for predicting beef and pork 
meat quality, while the application to lamb meat 
quality has been less well investigated.

The aim of this experiment was to determine the 
ability of NIR spectroscopy data collected on fresh 
(never-frozen) lamb LL to predict instrumental meat 
quality parameters of M. longissimus lumborum and 
M. semimembranosus.
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Figure 1. The ASD Labspec 5000 NIR spectrometer (left), the high intensity 
contact probe (centre) and application to a slice of lamb M. longissimus lumborum 

Materials and methods
A total of 208 Texel lambs were slaughtered at a 
mean age of 144 days (range 126 to 155 days) and 
mean hot carcase weight (HCW) of 15.1 kg (range  
8 to 25 kg) on a single day in a commercial abattoir 
and were subjected to electrical stimulation  
(825 volts, 14 Hertz for 20 seconds) at approximately 
40 minutes post mortem.

The methods for meat quality measurements are 
described by Craigie et al., (2012), briefly, traits 
measured on the LL included Volodkevitch and 
MIRINZ shear force, intramuscular fat percentage 
(IMF%), moisture content (%) and ultimate pH. 
Traits on the SM included Warner-Bratzler shear 
force, colour (L*, a*, b*, chroma and hue), ultimate 
pH and cooking loss expressed as a percentage 
of the un-cooked weight.

After the LL was removed from the carcase at 7, 
8 or 9 days post mortem, a 15 mm slice was taken 
from the anterior end of the muscle for NIR spectra 
collection. The freshly cut surface was allowed to 
bloom for two minutes (Shackelford et al., 2005). 
An ASD Labspec 5000 (ASD Inc., Boulder Colorado) 
NIR spectrometer fitted with a high-intensity 
contact probe (Figure 1) with a 10 mm spot size was 
operated using a laptop computer running the Indico 
Pro program (ASD Inc.). Ten replicate NIR spectra 
(350-2500 nm at 1 nm intervals) were collected by 
removing and replacing the scanning head on the 
meat surface between scans. 

Spectra were recorded as absorbance log  
(1/Reflectance). Plotting all spectra revealed that 
regions at the extremes of the range (350-2500 
nm) contained excessive noise (Figure 2). Removing 
these sections (350 to 499 nm and 1801-2500 nm) 
resulted in 500-1800 nm as the working spectra. 
 
Samples were split into calibration and prediction 
datasets by sorting in ascending order separately for 
each parameter and selecting every fourth sample 
for the prediction dataset, with the intervening three 
samples being allocated to the calibration dataset 
as recommended by Williams (2001). Partial least 
squares regression type 1 was used for predicting 
instrumental meat quality traits on the three muscles 
using median NIR spectra (500-1800 nm) from the 
replicates that had not been rejected as outliers as 
explanatory variables. Westerhaus et al., (2004) 
describe a strategy for handling outliers. Following 
this strategy, outliers for the reference meat quality 
parameter were identified when the calibration, 
cross-validation or prediction performance was 
poor, however samples were only removed if there 
was a known error with the sample value or where 
measurements were > 3 SD from the mean of the 
dataset. Potential outlier spectra were first identified 
in the same way, through poor calibration, cross 
validation or prediction performances. The Hotelling 
T2 statistic is a generalization of the Student’s t-test 
for multivariate analysis (Hotelling, 1931).
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Figure 2. Ten replicate scans from one sample (C003) over the full range  
(350-2500 nm), excessive noise can be seen at the ends of the spectral region.

Results
After the exclusion of an extreme value (10.68 kgF) 
in the MIRINZ prediction dataset, the R2

pred was the 
same as the R2

pred = 44% reported by McGlone et al., 
(2005) who applied their model to predict MIRINZ 
shear force on an independent dataset of 12 lambs 
with unknown backgrounds. Retaining the outlier 
reduced the R2

pred to 36%, SEpred = 1.38 (data not 
shown). In the prediction dataset for Volodkevitch 
shear force, there were three samples that had shear 
force values > 5.5 kgF which has been identified 
as a toughness threshold above which there may 
be adverse consumer reaction (Lambe et al., 2011). 
The model was unable to identify these samples 
as having a shear force value > 5.5 kgF (results 
not shown). In the MIRINZ prediction dataset, four 
samples that had MIRINZ shear force values > 5.5 
kgF, despite the encouraging performance, the 
model only correctly predicted one out of four 
samples that had a MIRINZ shear force value > 5.5 
kgF, although of the remaining 38 samples with 
reference MIRINZ shear force values < 5.5 kgF, none 
were predicted above this value (results not shown).
 

 
After removal of two outliers, a high R2cal was 
obtained for intramuscular fat percentage (IMF%) 
(R2cal = 69%, SEcv = 0.36%), and the prediction 
performance was similar (R2

pred = 65%, SEpred = 
0.33, RPDpred = 1.68). There was a marked decline 
in prediction of moisture content and ultimate 
pH. NIR was poor at predicting the shear force of 
the SM (Table 2) which was expected given that 
Volodkevitch shear force was found to be poorly 
correlated between the LL and the M. vastus lateralis 
in these lambs (Lambe et al., 2011). A correlation 
between LL and SM could not be established 
because two different shear force tests were 
used. NIR did show some promise for predicting 
the chroma of lamb SM, R2

pred = 57% (SEpred= 1.03, 
RPDpred = 1.55), however the performance was 
not as good for predicting the hue (RPDpred = 1.19). 
RPDpred values of 1.57 for L*, 1.47 for a* and 1.26 for b* 
were obtained when predicting SM colour from NIR 
spectra collected on the LL.
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Table 1. Performance of NIR calibration equations showing the coefficient of 
determination (R2) and standard error (SE) for calibration and cross-validation for 
predicting instrumental meat quality parameters of lamb from spectra collected on 
M. longissimus lumborum. The calibration phase was performed on 70% of the data.

Calibration Cross-validation

Lamb meat quality parameter Pretreatmenta PCb nc R2(%) RMSEd R2(%) SE RPDe

M. longissimus lumborum

Volodkevich shear force (kgF) Baseline 2 154 24.6 1.03 21.4 1.06 1.31

MIRINZ shear force (kgF) Baseline 2 126 24.6 1.27 18.7 1.34 1.10

Intramuscular fat (%) Baseline 7 151 68.5 0.31 57.4 0.36 1.88

Moisture content (%) MSC 3 152 38.1 0.71 32.6 0.75 1.33

Ultimate pH (pHult) Baseline 5 96 31.7 0.08 13.3 0.09 1.37

M. semimembranosus

Warner-Bratzler shear force (N) na 0 156 0 naf naf naf naf

Lightness (L*) none 3 156 49.7 1.53 46.7 1.59 1.36

Redness (a*) none 6 156 56.7 0.85 46.7 0.95 1.36

Yellowness (b*) MSC 6 153 49.1 0.80 30.0 0.95 1.20

Chroma (C*) MSC 7 156 59.8 0.95 37.8 1.19 1.25

Hue (H*) Baseline 4 156 24.1 0.03 12.2 0.03 1.06

Ultimate pH (pHult) MSC 0 156 0 naf naf naf naf

Cooking loss (%) SNV 3 153 37.6 2.05 32.7 2.15 1.21

a Pre-treatments applied to the spectra prior to PLS regression analysis and prediction,  
Baseline = Baseline correction,  
MSC = Multiplicative Scatter Correction and SNV = Standard Normal Variate. 
bPC = number or principal components used in the regression. 
c n = number of samples included in calibration and cross-validation phases.
d RMSE = root mean square error.
e RPD = ratio performance deviation is the SD of the Y variable in the calibration dataset (after removal of outliers) divided by 
f na = not available, where the calibration, cross-validation or prediction phase failed.
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Table 2. Performance of NIR calibration equations showing the coefficient of 
determination (R2) and standard error (SE) for prediction of instrumental meat 
quality parameters of lamb from spectra collected on M. longissimus lumborum.  
The prediction phase was performed on 30% of the data to gauge predictive ability.

Prediction

Lamb meat quality parameter Pretreatmenta PCb nc R2(%) SEd RPDd

M. longissimus lumborum

Volodkevich shear force (kgF) Baseline 2 52 29.1 1.05 1.17

MIRINZ shear force (kgF) Baseline 2 42 44.0 1.04 1.33

Intramuscular fat (%) Baseline 7 51 64.9 0.33 1.68

Moisture content (%) MSC 3 52 8.7 0.91 1.06

Ultimate pH (pHult) Baseline 5 33 0 0.10 1.00

M. semimembranosus

Warner-Bratzler shear force (N) na 0 51 nae nae nae

Lightness (L*) none 3 52 59.7 1.34 1.57

Redness (a*) none 6 52 53.9 0.92 1.47

Yellowness (b*) MSC 6 51 36.0 0.96 1.26

Chroma (C*) MSC 7 52 57.4 1.03 1.55

Hue (H*) Baseline 4 52 29.3 0.03 1.19

Ultimate pH (pHult) MSC 0 51 nae nae nae

Cooking loss (%) SNV 3 51 29.5 2.11 1.21

a Pre-treatments applied to the spectra prior to PLS regression analysis and prediction, Baseline = Baseline correction, MSC = 
Multiplicative Scatter Correction and SNV = Standard Normal Variate.
b PC = number or principal components used in the regression.
c n = number of samples used for the prediction phase.
d RPD = ratio of performance deviation (SD of the prediction dataset divided by the SE of prediction).
ena = not available, where the calibration, cross-validation or prediction phase failed.

The scientific conclusions and  
next steps 
This research showed that it is possible to predict 
some lamb meat quality parameters with NIR 
spectroscopy under experimental conditions. 
Development of stable prediction equations is 
dependent on having adequate variation in the 
trait of interest and a sufficiently large data set. 
Although one of the largest NIR data sets 
analysed to date in lamb meat, the lambs were 
part of a scientific trial and consequently should 
not be considered representative of a commercial 
slaughter population. For example, the vast 
majority of lambs slaughtered in the UK are 
crossbreds and the lambs used in this experiment 
were a specific breed type and there was very 
little variation in pH and shear force traits. 

The current results showed that there are 
differences in traits between muscles and that 
spectra collected on one muscle may not 
necessarily be a good predictor of meat quality 
traits of traits in another muscle. Further research 
is required to establish the robustness of the 
prediction equations and to further refine NIR 
calibration equations to measure lamb meat 
quality before NIR can be recommended as a tool 
ready for implementation. Next steps should aim to 
develop calibration models that are applicable to a 
wider variety of muscle and breed types in a 
number of different abattoirs and to investigate 
novel analysis techniques for development of such 
models.
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Background 
Establishing and evaluating accurate, reliable and 
objective techniques for measuring or predicting 
carcass and meat eating quality in farm animals 
is a key step for improving these traits in the 
industry. To evaluate the accuracy and reliability of 
online techniques, accurate reference methods are 
necessary. For carcass quality the use of physical 
dissection is the reference method of choice. 
Because physical dissection is destructive, time-
consuming and costly, CT could be a more cost-
effective alternative reference method to predict 
carcass composition without damaging  

 
or depreciating the primal joints. In particular for 
the calibration and validation of online methods 
of carcass classification and carcass evaluation, an 
accurate and reliable reference method is necessary 
to provide confidence for the use of those online 
methodologies in the industry. Recently, VIA has 
been reviewed as an online methodology for carcass 
classification and evaluation of carcass yield in beef 
(Craigie et al., 2012). For sheep, the usefulness of VIA 
for carcass classification and carcass composition 
has been shown in several studies by Rius-Vilarrasa 
et al., (2009a,b,c; 2010).

Value for industry

•	Computed tomography (CT) is a very accurate and precise measurement 
technique to determine carcass composition in comparison to physical 
dissection. CT can be used as the ‘gold standard’ for the calibration and 
validation of online systems in the abattoir such as Video Image Analysis 
(VIA) to determine carcass grading (EUROP conformation and fat classes) 
as well as lean and fat yields of the entire carcass or its carcass joints.

•	VIA of lambs showed 13% higher precision than the use of manual carcass 
classification scores and can therefore be recommended for carcass grading 
and determination of lean and fat yields of the entire carcass or carcass joints 
(Rius-Vilarrasa et al., 2009b). 

•	Visible Near Infrared spectroscopy (NIR) are able to predict meat eating quality 
criteria such as sensory characteristics (e.g. tenderness, juiciness, flavour), 
nutritional quality criteria (e.g. fatty acid profiles), technological quality criteria 
(e.g. cooking loss) and visible quality criteria (e.g. colour parameters). 

•	Online measurements obtained by VIA and NIR can be used for a 
value-based marketing system, genetic improvement programmes and 
management systems to enhance product quality.
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Figure 1. Prediction of sensory characteristics, physical tenderness measurements, 
colour, cooking loss and fatty acid profiles by NIR. Reference measurements for 
those traits were obtained by a trained taste panel analysis, slice shear force 
measurements using Tenderscot, Minolta colorimeter measurements, weight 
loss after cooking to a tissue centre temperature of 71ºC and chemical fatty acid 
extraction followed by gas chromatography, respectively.

For meat eating quality the sensory assessment of 
tenderness, juiciness and flavour based on a trained 
taste panel is the reference method choice.  
 
The estimation of these subjective scores of meat 
eating quality by objective techniques is challenging 
and should be predicted as early as possible after 
slaughtering. Prieto et al. (2009b) reviewed NIR 

and showed its capability to predict, besides 
numerous other attributes, eating and nutritional 
quality of meat and indicated its suitability for online 
application in the abattoir. Healthy beef is largely 
related to its fatty acid profiles with increased 
polyunsaturated fatty acids, in particular Omega-3 
fatty acids, being associated with higher human 
health benefits. 



41

Tissue weights carcass  Regression slope  R2 RMSE

Fat (kg) 1.002   0.005 0.96 1.28

Muscle (kg) 1.003 ± 0.003 0.96 2.28 

Bone (kg) 0.999 ± 0.003 0.95 0.37

Accuracies of NIR to estimate sensory characteristics 
(tenderness, juiciness and flavour) ranged form R2 of 
0.21 to 0.59, with flavour predicted most accurately 
(Table. 2). Tenderness, which was measured 
objectively by shear force techniques were estimated 
by NIR with substantially higher accuracy than 
tenderness assessed by a trained taste panel.  
 
 

In particular, for slice shear force measured at 3 days 
post mortem, which is close to the NIR scanning 
at 2 days post mortem, the highest accuracy of 
prediction was achieved. Colour measurements of 
meat were highly predictable by NIR. 

Table 1. Accuracy and precision of CT to predict carcass composition of beef 
cattle in comparison to physical dissection (n = 44; Navajas et al., 2010a) 

Why work is needed 
Carcass quality is of high economic value for 
production efficiency of beef cattle (fat tissue 
deposition requires at least 4 times as much feed 
energy than lean tissue deposition) and the value-
based marketing of meat using EUROP carcass 
classification. Therefore, online systems to predict 
carcass conformation and fat class such as VIA 
have been developed to predict carcass grading as 
well as entire carcass composition in the abattoir. 
To calibrate and validate those systems, accurate 
reference methods are necessary for which CT may 
be the method of choice. To identify the accuracy of 
CT to predict carcass composition of beef cattle a 
comparison to physical dissection was carried out. 
High eating and nutritional qualities of meat are 
of important to consumers and are therefore of 
great interest to retailers. As a consequence, the 
measurement of these attributes of meat quality 
online in the abattoir is needed to create a feedback 
system to optimise all factors influencing meat 
quality from farm to abattoir. NIR shows the potential 
for providing the prediction of different attributes 
relating to eating and nutritional quality of meat. In 
order to achieve this, accurate prediction equations 
have to be developed based on studies, which have 
recorded NIR spectra as well as measurements of 
eating and nutritional quality of the same samples 
using reference methods such as the trained taste 
panel for sensory characteristics, slice shear force for 
objective tenderness measurements, colorimeter for 
colour parameters and chemical extraction and gas 
chromatography for fatty acid profiles.  

The methods used 
For farm animals, CT has been extensively used 
in sheep and pigs but to much lesser extent in 
beef. This made it necessary to develop thresholds 
for the segmentation of fat, muscle and bone 
in the CT spirals of beef carcass joints and to 
determine the precision and accuracy of the CT 
for determination of carcass composition in beef 
cattle (Navajas et al., 2010a). NIR has been used to 
predict eating and nutritional quality characteristics 
of meat under laboratory conditions. However, 
the use of this technique in an abattoir as early 
as 48h post mortem is rare and would have direct 
implementation for the industry. The following 
results are obtained in studies carried out at SRUC 
based on CT and NIR using reference methods of 
physical dissection, trained taste panel analysis, 
objective tenderness using Volodkevitch shear force 
and chemical fatty acid analysis carried out at the 
University of Bristol (Tables 1 to 3).

The results obtained 
The accuracies of estimation of carcass composition 
of beef cattle using CT are very high in the range of 
R2 from 0.95 to 0.96 for different tissues (Table. 1). 
The regression slope is close to one indicating that 
the developed CT prediction showed no systematic 
bias in estimation of body composition obtained by 
physical dissection. Moreover, Navajas et al. (2010b) 
showed that the entire beef carcass composition can 
be reliably estimated from the tissue weights of a 
single primal cut assessed by computed tomography.
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Characteristic N  R2  SECal SECV

Tenderness 173 0.28 0.56 0.60

Juiciness 174 0.21 0.39 0.41

Flavour 181 0.59 0.34 0.42

Abnormal flavour 172 0.22 0.35 0.37

Overall liking 178 0.25 0.37 0.38

Volodkevitch shear force (N) 172 0.37 11.12 12.70

Slice shear force (3 days pm; N) 176 0.54 46.49 55.76

Slice shear force (14 days pm; N) 176 0.31 26.97 28.49

Cooking loss (%) 130 0.35 2.13 2.35

L* colour 178 0.86 0.88 0.96

a* colour 176 0.86 0.71 0.95

b* colour 171 0.91 0.52 0.69

Table 2. Prediction of meat eating quality characteristics of beef using NIR 
(n=number of animals, R2 = coefficient of determination, SECal or CV = standard 
error of calibration and cross validation, respectively; Prieto et al., 2009a)  

NIR predicts fatty acids based on the absorption 
of infrared light by carbon-hydrogen bonds (Table. 
3). The prediction accuracies were different for 
Aberdeen Angus than for Limousin. Generally 

moderate R2 were estimated suggesting the good 
capability of NIR to predict fatty acid profiles. As 
well as NIR, CT can predict the fatty acid profiles in 
beef based on muscle density (Prieto et al., 2010).

The scientific conclusions 
The results indicate the high accuracy and 
precision of CT to determine carcass composition 
in beef. Therefore, CT can be recommended as a 
reference method for calibration and validation of 
online systems such as VIA. The CT may be even 
more accurate than the physical dissection due to 
possible variation among butchers involved in 

 
dissection. NIR has the capability to predict 
numerous eating, visual and nutritional quality 
attributes of meat in one rapid taken 
measurement. Due to its online suitability, the 
method is likely to have a substantial impact on 
measurements of eating and nutritional quality of 
meat in the abattoir.

Aberdeen Angus (n = 84) Limousin (n = 105)

Fatty acids (FA) R2 SECV R2 SECV

Saturated FA 0.40 402 0.68 235

Monounsaturated FA 0.44 452 0.75 240

Polyunsaturated FA 0.16 16 0.64 17

Omega-6 FA 0.73 18 0.45 21

Omega-3 FA 0.43 8.1 0.12 9.0

Intramuscular FA 0.43 1029 0.75 477

C16:0 (palmitic) 0.48 257 0.69 146

C18:3 n-3 (α-linolenic) 0.27 4.4 0.60 3.3

C20:5 n-3 (EPA) 0.26 2.4 0.16 2.7

C22:6 n-3 (DHA) 0.19 0.4 0.36 0.5

Table 3. Prediction of fatty acid profiles of beef using NIR (Prieto et al., 2011)  
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The next steps 
The VIA system for beef carcass evaluation should 
be calibrated and validated using CT to predict the 
potential advantage of this system in comparison  
to manual grading of carcasses. To obtain reliable  

 
prediction equations for NIR, large datasets  
with accurate measurements of important meat 
quality attributes using reference methods are 
necessary. 
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Estimation of dry-cured ham 
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Value for industry
• Dielectric time domain reflectometry system can be considered a useful tool to 

characterize and classify dry-cured ham in industry. 

• It permits to determine salt and water contents in dry-cured ham.

• It can be a non-destructive alternative to destructive analytical determinations.

• It could be useful to verify ETG Jamón Serrano specifications concerning salt 
and water contents.

• It could be used to classify hams according to its salt content and to select 
those with a reduced salt content which could be labelled accordingly.

Background
Dielectric properties of biological tissues give relevant 
information of the product’s characteristics and 
composition (Danez et al., 2008). Many authors have 
shown how the composition of a foodstuff and its 
influence on the dielectric spectra can be used to 
predict different quality parameters (Sosa-Morales et 
al., 2010) or to detect added water in pork and poultry 
meats (Kent et al., 1996; 2000; 2002). Differences in 
dielectric spectra between pale, soft and exudative 
(PSE), dark, firm and dry (DFD) and red, firm and 
non-exudative meats (RFN) have also been shown 
(Castro-Giráldez et al., 2010a). Furthermore, it has 
been demonstrated that the dielectric properties are 
well suited to determine salt ions from liquid phase 
or when they are bound to molecules (actin/myosin 
system) in the raw muscle tissue during the salting 
treatment (Castro-Giráldez et al., 2010b). 

Besides, techniques such as time domain 
reflectometry (TDR) can measure dielectric 
properties of samples by the interaction of an 
electromagnetic step or impulse containing a wide 
range of frequencies at the same time (Miura et 
al., 2003). TDR, in combination with multivariate 
analysis, has been found to be useful to predict 
different variables associated with loss of quality
of stored fish (Kent et al., 2004; 2007). 

Why work is needed?
No studies to determine the composition of  
dry-cured meat products have been carried 
out using either dielectric spectroscopy or TDR 
technology. This technology may be of interest for 
dry-cured ham industry to determine composition 
online and use this information for a better 
characterization of the final product.

The methods used
The TDR device RFQ Scan 3.0 (Sequid GmbH, 
Bremen, Germany) was used to obtain time domain 
curves from dry-cured ham samples. In this TDR 
system, a step signal is generated and applied to the 
material under test via an open-ended coaxial line 
sensor, which is in close contact with the sample. The 
TDR applies a step signal with a 100 ps rise time and 
a repetition frequency of 20 MHz, corresponding to 
a frequency range from 20 MHz to approximately 5 
GHz. The device samples the time domain waveform 
with a time-base resolution of 10 ps. The obtained TDR 
curves were related to chemical composition using 
multivariate statistical analysis in order to develop 
models for salt and water contents prediction.
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The results obtained
Table 1 shows the regression parameters (R2, 
RMSEC and RMSEV) of the predictive models 
obtained from partial least square regression 
(PLSR) analysis. The relationship between the 
measured and the predicted salt content using the 
developed predictive models is shown in Figure 1. 
Salt predictions fitted well to the analytical values 
for all the samples obtained from different areas 
of the slice with a RMSEV of 0.22%. No effects of 
dryness or fatness of the sample on the prediction 
errors were observed (results not shown). Thus, the 
application of the predictive model for salt content 
in areas with different intramuscular fat content (in 
the range studied here, 3.3 to 29.5%) or in a product 
with different drying levels (in the range studied 
here, 37.1 to 65.6%) is feasible. Nevertheless, a slight 
tendency to underestimate salt content in samples 
with high and low salt content was observed 
(Figure 1). More experimental work is needed for 
estimating samples with salt contents higher  
than 8%. 

The relationship between the analytical and 
predicted water content is presented in Figure 2. 
Water content was predicted accurately, showing 
a RMSEV of 1.67%. Neither salt nor water or fat 
contents of the sample influenced the water content 
prediction errors. 
 

Table 1. R-square and error of the model of prediction (RMSEC) and error of 
validation (RMSEV) for the prediction models to determine salt and water 
contents in dry-cured ham.

Figure 1. Relationship between 
analytical and predicted NaCl content. 
------ bisector.
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Figure 2. Relationship between 
analytical and predicted water content. 
------ bisector.
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Although the precision of predictive models was low 
in comparison to the reference methods, it could be 
high enough for quality control purposes in industry. 
A direct application of this technology on dry-cured 
ham in industry would be the characterization and 
further classification of sliced dry-cured ham as 
a function of its salt content. The main drawback 
of the method is that it gives a local estimation 
of the studied parameters, the penetration of the 
microwave being no deeper than 1 mm. 

In another study, it has been demonstrated that 
temperature has an important effect on the sample, 
mainly for salt prediction, observing the maximum 
deviation in samples with high water content. 
Applicability of the TDR method in the meat industry 
to classify and characterize the product depends 
also on the homogeneity of the product and on the 
representativeness of the areas of measurement. For 
example, estimation of the global salt content of  
dry-cured ham slices is possible with an error of 
about 0.37% for salt and 1.89% for water. 

The scientific conclusions
Salt content (RMSEV=0.22%) and water content 
(RMSEV=1.67%) can be accurately determined. 
Developed predictive models were accurate 
enough to consider the TDR device as a useful 
non-destructive tool for characterizing and 
classifying dry-cured ham online in industry.

The next steps
After this research work, Sequid GmbH 
developed modules to automatically determine 
salt and water contents using RFQ-scan device, 
which are actually commercially available. New 
utilities using this technology are being studied.
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Value for industry

• Computed tomography (CT) scanning of beef rib sections is an accurate tool 
to estimate rib total fat, total lean, and intermuscular fat which is useful for 
the classification of cuts for further processing.

• Marbling can be visualized with CT and its prediction is also possible with a 
higher error.

• The use of CT for prediction of tissue composition could also be applied to 
other commercial cuts of interest for the industry.

Use of computed tomography to
estimate rib section composition
from Holstein bulls and steers
A. Brun, S. Marti, C.E. Realini, M. Pérez-Juan, M.Devant, M. Font-i-Furnols.

Introduction

Knowledge of the composition of beef carcasses 
is important issue for the meat industry as well 
as for the breeding companies because provides 
information on carcass value and characteristics 
for marketing purposes, production optimization, 
nutritional studies or breeding programs (Navajas 
et al., 2010). 

Composition of beef carcasses or cuts is usually 
measured by physical dissection because it is 
the reference method. However, there are other 
non-destructive, accurate, precise and quick 
technologies that can also be used to achieve these 
objectives such as visual image analysis (VIA) and 
computed tomography (CT) (Craigie et al., 2012; 
Prieto et al., 2010).

CT is based on X-rays that pass through the body/
carcass and are attenuated to different degrees 
according to the density of the different tissues. The 
attenuation values are expressed in Hounsfields units 
(HU) and values are related to the different tissues.

The objective of the work was to evaluate 
the accuracy of CT to estimate the 9-11th rib 
section composition in terms of lean and total, 
subcutaneous, intermuscular and intramuscular fat.

Material and methods
Animals and samples
One hundred and sixty one 9-10-11th rib sections 
from Holstein bulls and steers were used. Animals 
were slaughtered at 10, 12 and 14 months of age in 
a commercial abattoir located in Barcelona, Spain 
(Marti et al., 2012).

At 24h post mortem, the 9-10-11th rib section was 
removed, transported to IRTA-CENTA in Monells 
(Girona) and cut according to Hankins and Howe 
(1946) for CT scanning and manual dissection 
(Figure 1). The average weight of the rib sections 
was 4179.16±736.97g.
 
CT-scanning
The rib sections were scanned with a General Electric 
HiSpeedZx/i CT device. The following images were 
obtained from each rib section:

• One image in the middle of the section and at the 
level of the 10th rib using the following acquisition 
parameters: 10 mm thick, helical 2s, 140 kV, 145mA, 
512x512 matrix and reconstruction algorithm STD 
(Figure 1).  
 
 

IRTA, Spain
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Figure 2. Image obtained from the rib section to determine its composition (left) 
and to visualize marbling (right).

Figure 1. 9-11th rib section (left) and evaluation using CT (right).

• One image at the level of the 11th rib using the 
following acquisition parameters: 1 mm-thick, 
axial 3s, 120 kV, 200 mA, 512x512 matrix and 
reconstruction algorithm EDGE and DFOV 350mm 
to visualize marbling (Figure 2) according to Font i 
Furnols et al. (2009) and Brun et al. (2011).

In addition, a subsample of 45 rib sections was 
completely scanned using the same parameters as 
the first image and obtaining 1 image every 10mm 
with an average of 27 images per section. 

Dissection and intramuscular fat analysis
After scanning, all rib sections were dissected and 
intermuscular fat, subcutaneous fat, bones and lean 
were separated and weighed. The average lean 
content was 2280.52±391.95g.

Intramuscular fat was determined by using a 
FoodScanTM analyzer (FOSS, Denmark) based on 
near infrared technology. Fat content was on average 
2.24±1.09%.

Images treatment and data analysis
The volume associated with each Hounsfield (HU) 
value, between -100 and +120 was obtained and 
used for the prediction. 
 
The volume associated with HU values between 
0 and 120 was used for lean determination while 
those associated with HU values between -100 and 
0 was used for fat determination. The percentage 
of volume between -100 and 0 with respect to the 
total volume (HU values between -100 and +120) 
was used for intramuscular fat estimation.
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Results and Discussion 
Prediction parameters for the 9-11th rib section 
composition are shown in Table 1. Subcutaneous 
and intramuscular fat had higher prediction errors 
as shown by their poorer estimate, due to the lower 
weight and relative importance of these tissues 
in the rib section. These results can be expected 
because the amount of tissue to be predicted is 
lower and the amount of voxels with partial volume 
effect is higher, which makes it more difficult to 
separate the voxels into fat or lean.

In general, the estimation of the 9-10-11th rib 
composition was better when the whole cut was 
scanned rather than obtaining only one image per 
each rib section (see Table 1), mainly because the 
error of prediction (RMSEP) was lower and the 
determination coefficient was higher (R2). The best 
prediction was for total fat (R2 = 0.94 and RMSEP 
= 46g) and total lean (R2 = 0.97 and RMSEP = 47g) 
of the rib section. These results are in line with 
those found by Navajas et al. (2010) and Prieto et 
al. (2010). Intermuscular fat estimation presented 
R2 of 0.77 and RMSEP of 56g, and subcutaneous 
fat had R2 of 0.53 and RMSEP of 57g which are 
worse than those found by Prieto et al. (2010). This 
difference in precision of the prediction can be due 
to differences in acquisition parameters and due to 
the fact that Prieto et al. (2010) took 8 mm-thick 
images of the cut, while in the present work images 
were 10 mm-thick.

 
It is important to find the equilibrium between the 
precision and the cost of using one image or more 
than one image or the whole section, because 
although the use of only one image is less precise  
it is also less expensive and less time consuming. 
Thus, the necessities of precision and the budget  
will determine the methodology to be used.

Estimation of the intramuscular fat had R2 values 
of 0.53 and RMSEP of 0.56%. This prediction 
using the HU distribution of all the rib section 
was better than using only one image of the 
Longissimus thoracis muscle (results not shown). 
This is probably due to the fact that the correlation 
between intramuscular fat and total fat of the 
cut is 0.60 and because, as reported by Indurain 
et al. (2009), some fatness measurements can 
improve intramuscular fat estimation. Regarding 
the prediction of the intramuscular fat using the 
image obtained at the level of the 11th rib, it is 
clear that the error is quite high (1.02%) and the 
determination coefficient quite low (0.18). Thus, 
this image is good to visualize the marbling but 
not to predict intramuscular fat content.

Table 1. Prediction parameters of the 9-11th rib section composition.

Prediction of:                                  R2                                                     RMSEP

10th rib image

Total fat (g) 0.87 134.8 

Total lean (g) 0.69 219.4 

Intermuscular fat (g) 0.66 116.8 

Subcutaneus fat (g) 0.52 125.2 

Intramuscular fat (%) 0.54 0.74

Between 9th-11th rib images

Total fat (g) 0.94 45.8 

Total lean (g) 0.97 46.8 

Intermuscular fat (g) 0.77 55.9 

Subcutaneus fat (g) 0.53 57.4 

Intramuscular fat (%) 0.53 0.56

11th rib image

Intramuscular fat (%) 0.18 0.92
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The scientific conclusions and next steps  

CT scanning of beef rib sections is an accurate tool to estimate total fat, total lean, and 
intermuscular fat content and the predictions improve when the whole section is scanned 
rather than a single cross-sectional image. However, the preferred prediction method will 
depend on the balance between precision and cost. Further work is underway to develop cost 
effective predictions of rib joint composition using CT scans.
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Introduction
Knowledge of the nutritional value of food products 
is of great importance to obtain a balanced diet. 
Increasingly, consumers are paying attention to 
the quality of food products and making decisions 
about their food consumption based on the nutrition 
label. Nutritional claims were designed to encourage 
manufacturers to produce healthier food products. 
For example, since a relation between high dietary 
salt intake and cardiovascular diseases has been 
demonstrated, consumers’ trends are moving to 
low-sodium food products (Feldman & Schmidt, 
1999; Ruusunen & Puolanne, 2005; World Health 
Organization, 2007). Also the meat industry is trying to 
reformulate their products by searching for alternatives 
for sodium chloride (NaCl), such as potassium chloride 
and sodium lactate, but substitutes must have minimal 
effects on the water activity (aw) and the shelf-life of 
the (Desmond, 2006; Samapundo et al., 2010).

Reference methods to determine gross composition, 
salt content and water activity are relatively simple but 
labor intensive and time-consuming to carry out. This 
ensures that the meat industry is asking for fast and 
accurate tools to replace the traditional reference 
methods. Spectroscopic techniques do offer a lot of 
potential in this regard. Among these light based 
techniques, mid infrared (MIR) spectroscopy  

 
represents a promising tool. A few studies are available 
demonstrating the use of MIR spectroscopy to predict 
gross composition of animal products (Inon et al., 
2004; Rodriguez-Saona et al., 2006). Soyeurt et al., 
(2009) showed that MIR spectroscopy has the potential 
of predicting different minerals including sodium (Na+) 
in cow’s milk, while Karoui et al.,(2006) used MIR to 
predict NaCl in cheese. Collell et al., (2011) recently 
published information relating the use of near infrared 
(NIR) spectroscopy to determine the aw value of 
dry-cured ham. 

As the MIR region is based on fundamental vibrations 
of functional groups of the molecule, MIR spectra are 
less difficult to interpret and have a better signal/
noise ratio compared to NIR spectra which consist of 
overtones and combination bands (Inon et al., 2004; 
Carbonaro & Nucara, 2010). Since the intensities of 
the characteristic absorption bands are proportional 
to the concentration of the components, MIR can 
also be used for quantitative analysis (Vlachos et al., 
2006).

The aim of this study was to evaluate the use of MIR 
spectroscopy to determine the gross composition, 
salt content and water activity of raw, intermediate 
and finished meat products, especially to implement 
smooth input and output controls in meat companies. 

Prediction of gross composition, 
salt content and water activity of fresh 
meat and meat products by mid infrared 
attenuated total reflectance 
spectroscopy
E. Neyrinck1, P. Stefanka1,2, J. Maertens1, S. De Smet3 and K. Raes1

1.  University College West-Flanders, Department of Industrial Engineering and Technology, 
Research Group EnBiChem, Kortrijk, Belgium

2.  Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Evaluation 
and Processing of Animal Products, Nitra, Slovakia

3.   Ghent University, Faculty of Bioscience Engineering, Laboratory for Animal Nutrition 
and Animal Product Quality, Ghent, Belgium 

Value for industry

In this study, it was shown that mid infrared spectroscopy has the potential to 
predict simultaneously gross composition, salt content and water activity of 
different raw, intermediate and finished meat products. 
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Materials and methods

A. Meat samples
Both fresh and frozen meat samples were supplied 
by the companies participating in the project, which 
are active in the Belgian meat processing industry. 
Different types of heterogeneous meat products 
(fresh meat: beef, poultry, pork; fat tissue: lard, 
backfat; processed meat: fermented sausage, cooked 
ham, dried ham, pâté) were collected between May 
2008 and November 2011. The supplied products 
were chosen in this way to obtain a wide variety in 
gross composition, salt content and water activity. 

B. Wet chemical analysis
Two heterogeneous datasets were built up i.e. 1) to 
calculate the prediction equations and 2) to perform 
an external validation of the prediction equations. 
Regarding the calibration dataset 96, 100 and 137 
meat samples were analyzed for gross composition, 
salt content and water activity respectively; for the 
external validation dataset respectively 78, 71 and 94 
samples were analyzed. The gross composition was 
determined by the reference methods, i.e. dry matter 
content (ISO 1442 – 1973), crude fat content (ISO 
1444 – 1973) and crude protein content (ISO 937 
– 1978). Reference methods for the determination 
of Na+ and NaCl content were inductive coupled 
plasma (ICP) and indirect measurement by titration 
of chloride ions (Method 976.18, AOAC – 1995) 
respectively. The aw value was measured at 25°C 
using the chilled mirror dewpoint technique 
(AquaLab, Decagon Devices). 

C. Collecting MIR spectra in conjunction with 
sample preparation 
The MIR spectra of the homogenized, intact samples 
were collected between 4000 and 600 cm-1 at 
a resolution of 4 cm-1 on a Fourier Transform 
spectrometer (Nicolet X700, ThermoFisher 
Scientific) equipped with an attenuated total 
reflectance (ATR) sampling accessory. The ATR 
sampling technique is based on multiple internal 
reflectance, and uses a zinc selenide (ZnSe) crystal 
which enables samples to be examined directly in the 
solid state without further preparation. Instrument 
control and spectral collection were performed using 
OMNIC software (version 6, ThermoFisher Scientific). 

In this study, much attention has been paid to 
preparation of the meat samples. On several model 
products (pork and backfat) the sample preparation 
was investigated. After standardizing the different 
steps in the sample preparation, i.e. completely 
homogenizing the sample, pressing samples with 
a standardized weight of 1 gram and standardized 
temperature of 15°C on the crystal, reproducible 
spectra were obtained. For each meat sample,  
5 spectra were recorded of which an average 
spectrum was calculated and used for further 
analysis. The ZnSe crystal was cleaned between 
measurements with hexane. 

D. Statistical analysis
Based on the reference and spectral data, calibration 
models were calculated using the Partial Least 
Square (PLS) regression technique and validated 
using 2 different methods: an internal validation 
using a leave one out cross-validation and an 
external validation using meat samples which were 
not used to build the prediction equations. The 
accuracy of each calibration was evaluated based 
on the calibration (RC), cross-validation (RCV) and 
prediction (RP) correlation coefficient. A correlation 
coefficient between 0.91 and 0.95 reveals good 
prediction; calibration models having a correlation 
coefficient above 0.95 are considered to be excellent 
(Fagan et al., 2007). Also the errors on calibration 
(RMSEC), cross-validation (RMSECV) and prediction 
(RMSEP) were calculated to test the quality of 
the prediction equations. Sinnaeve et al., (1994) 
considered a PLS model as acceptable with a ratio 
standard deviation of the reference data on RMSECV 
or RMSEP, called the ratio of prediction to deviation 
(RPD), larger than 2. A RPD ratio less than 1.5 
indicates that the calibration model cannot be used 
for further prediction.
   

Various data pretreatments, using the Unscrambler 
software, and spectral regions were compared in 
order to find the most robust calibration models. 
Mathematical preprocessing techniques such as vector 
normalization (VN), multiplicative scatter (MSC) 
correction, standard normal variate (SNV) correction, 
derivatives of the original spectrum or a combination 
of these techniques were used to enhance the 
prediction ability of the prediction equations. 
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Results and discussion
Statistical parameters of both calibration and 
external validation dataset are given in Table 1. 
The selected spectral regions, spectral pretreatment, 
number of PLS factors and the results for calibration 
and cross-validation are shown in Table 2. The 
MIR calibration models, tested by cross-validation, 
yielded robust prediction equations for gross 
composition, salt content and aw with RC and RCV 
of minimum 0.96 and 0.93 respectively. The RMSECV 
varied between 2.75 and 9.04 g/100 g for gross 
composition; the RMSECV was 0.28 and 0.58 g/100g 
for Na+ and NaCl respectively, and 0.01 for aw. 

Good calibration models were obtained based on 
the RPD value also, which varied between 2.81 
and 4.90. A relatively good distribution of the 
meat samples along the calibration equations was 
observed. The results for the external validation are 
reported in Table 3. After validating the calibration 
models with meat samples which were not used to 
build the prediction equations, the RP varied  

between 0.59 and 0.95. The RMSEP varied between 
4.33 and 11.37 g/100 g for gross composition; the 
RMSEP was 0.39 and 1.01 g/100 g for Na+ and 
NaCl respectively, and 0.03 for aw. Concerning the 
external validation dataset, the RPD value was only 
larger than 2 for water and crude fat content. The 
prediction was still not accurate enough for crude 
protein, salt content and aw due to the high RMSEP. 

Due to the lack of samples in specific concentration 
intervals, relatively poor distributions of meat 
samples along the prediction equations were 
observed, especially for crude fat, salt content 
and aw. For crude fat content, there is a lack of 
samples in the range between 40 and 70 g/100 g. 
Expanding the dataset using artificial mixed samples 
could possibly improve the model. For Na+ and 
NaCl, a small number of samples at the higher salt 
concentration was analyzed while for aw less samples 
at the lower aw value were examined.

Table 1. Statistical parameters1 of both calibration and external validation dataset

Table 2. Calibration and cross-validation results1

1 RC = calibration correlation coefficient; RMSEC = root mean square error on calibration; RCV = cross-validation 
correlation coefficient; RMSECV = root mean square error on cross-validation; RPD = ratio SD on RMSECV; 
SNV = standard normal variate; MSC = multiplicative scatter correction.

1 SD = standard deviation; Min = minimum; Max = maximum.

                                             Calibration Dataset External validation dataset

Parameter N Mean SD Min Max N Mean SD Min Max

Water (g/100g) 96 56.54 23.25 7.51 77.46 78 54.68 22.94 5.44 75.56

Crude protein (g/100g) 96 18.11 7.99 1.45 28.86 78 16.53 7.72 1.49 25.64

Crude fat (g/100g) 96 25.26 31.20 0.67 92.34 78 24.51 28.21 0.86 91.28

Na+ (g/100g) 100 1.47 0.81 0.47 3.12 71 1.09 0.45 0.32 2.67

NaCl (g/100g) 100 3.19 1.73 0.79 6.78 71 2.67 1.40 0.93 7.19

aw 137 0.942 0.049 0.810 0.997 94 0.956 0.039 0.832 0.998

Parameter Spectral region 
(cm-1)

Pretreatment PLS  
Factors

RC RMSEC RCV RMSECV RPD

Water (g/100g) 2950 - 900 SNV 12 0.99 4.26 0.96 6.06 3.84

Crude protein 
(g/100g)

4000 - 600 SNV 17 0.98 1.74 0.94 2.75 2.81

Crude fat  
(g/100g)

3030 - 2800;  
1720 - 620

1st derivative 14 0.99 5.68 0.96 9.04 3.45

Na+ (g/100g) 4000 - 600 SNV 10 0.96 0.22 0.93 0.28 2.89

NaCl (g/100g) 4000 - 600 MSC 12 0.97 0.42 0.94 0.58 2.98

aw 3400 - 700 SNV 8 0.97 0.01 0.96 0.01 4.90
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Table 3. External validation results1

1 RP = prediction correlation coefficient; RMSEP = root mean 
square error on prediction; RPD = ratio SD on RMSEP. 

Parameter RP RMSEP RPD

Water (g/100g) 0.95 8.19 2.80

Crude protein (g/100g) 0.88 4.33 1.78

Crude fat (g/100g) 0.93 11.37 2.48

Na+ (g/100g) 0.59 0.39 1.15

NaCl (g/100g) 0.71 1.01 1.39

aw 0.69 0.03 1.30

The scientific conclusion
Accurate calibration models for gross 
composition, salt content and aw were 
obtained (RC min 0.96; RCV min 0.93; RPD 
min 2.81) but after external validation it 
was shown that the prediction was still 
not accurate enough for crude protein, 
salt content and aw. MIR spectroscopy in 
conjunction with PLS regression has the 
potential to predict gross composition, 
salt content and aw but optimization of the 
external validation is necessary, probably due 
to the heterogeneity of the tested samples. 

The next steps
Due to the heterogeneity of the tested 
products and the lack of samples in some 
concentration intervals, optimization of the 
external validation by expanding the dataset 
is necessary. 
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Value for industry

The beef industry (e.g., Breeders organisations, Herd Books, A.I. centres, 
PDO – PGI Consortia, Abattoirs, Beef retailers, etc.) can use Near InfraRed 
Spectroscopy (NIR) as tool for the genetic improvement of beef cattle and for 
monitoring meat quality over the meat supply chain. 

•	 Beef quality and chemical composition traits, measured by reference 
methods, exhibits exploitable genetic variation;

•	 NIR can predict rapidly, cheaply and with acceptable accuracy beef chemical 
composition (including also fatty acids profile) and some physical traits 
(e.g., colour traits and drip loss);

•	 Such predictions shows genetic correlations with corresponding reference 
measures higher than phenotypic ones; iv) the predictions are more accurate 
on intact muscles cross sections than on minced samples; 

•	 The use of extended spectra, from visible to mid-infrared, allows for better 
prediction of beef quality physical traits; vi) there is some perspective to 
use the spectra collected at abattoir at line on exposed muscles of whole 
carcasses to estimate beef quality of inner muscles after aging.

The use of NIR for the prediction  
of meat quality and fatty acid profile 
aimed at the genetic improvement  
of beef cattle
G. Bittante

Background 
Beef quality traits are very important for the whole 
beef production chain but they are not considered 
in the selection indices of beef breeds despite 
exhibiting genetic variation (Boukha et al., 2011). 
The problem is mainly related to difficulty to collect 
phenotypes at the individual level. Basically, large-
scale recording of individual beef quality traits 
is critical because the available techniques are 
time-consuming, and as yet, no high-throughput 
automated measuring device has been developed.

Why work is needed 
Objectives of the research activity at Padova 
University were/are to test the possibility of 
obtaining rapid and cheap predictions of meat 
quality, possibly at the abattoir and at line or off 
line, for monitoring the beef production chain and 
implement data collection valuable for the genetic 
improvement of beef breeds.

University of Padova – DAFNAE: Department of Agronomy, Food, Natural resources, Animals and Environment.  
Viale dell’Università, 35020 Legnaro (PD), Italy.
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The methods used 
Five trials have been carried out using samples 
from the carcasses of the following animals:
1.  1,150 Piemontese young bulls (one minced 

sample from M. longissimus thoracis of each 
carcass used for NIR spectrum collection and 
reference analyses);

2.  1,230 Piemontese young bulls (one minced 
and one intact subsample from M. longissimus 
thoracis of each carcass used for NIR spectrum 
acquisition and reference analyses, respectively);

3.  21 Chianina, Marchigiana and Romagnola young 
bulls (15 samples of 15 different muscles of each 
carcass divided into one minced and one intact 
subsamples: 672 subsamples in total; NIR spectra 
were collected on all subsamples, reference 
analyses were done on intact subsamples);

4.  149 Charolais, Limousin and Irish crossbred young 
bulls (NIR spectra collected on whole carcasses 
after slaughter and beef quality measured using 
reference methods on one aged M. longissimus 
thoracis sample per carcass);

5.  81 young bulls and heifers obtained from Belgian 
Blue sire mated to dairy cows (NIR spectra 
collected on whole carcasses after slaughter 
and beef quality measured using reference 
methods on one aged M. longissimus thoracis 
sample per carcass);

 
All animals were raised in commercial herds in 
Italy with the only exception of those of the trial 5 
reared in the Experimental Farm of the University 
of Padova.

The physical meat quality traits (i.e., colour traits, 
drip losses, cooking losses, shear force of cooked 
meat) were analysed on all samples collected 
on trials 2, 3, 4, and 5 according with reference 
methods described by Boukha et al. (2011). The 
intramuscular fat and fatty acid profile have 
been analysed on 148 meat samples of the trial 
1, according to reference method described in 
Cecchinato et al. (2012).

The infrared spectrometers used for the trials were: 
a) a Foss NIRSystems 5000 (Foss Electric A/S, 
Hillerod, Denmark) for trial 1 and 2; b) Foodscan 
(Foss Electric A/S, Hillerød, Denmark) for trial 3; 
and c) LabSpec2500 (Qualityspec Pro, ASD Inc., 
Boulder, CO) for trials 3, 4 and 5. The spectrometers 
work on different wavelength interval, as outlined in 
Figure 1, as the first instrument cover a range in the 
NIR – MIR waves, the second a narrow range of NIR 
waves and the third a wide range in the visible –  
NIR region.
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(b)Figure 1. Spectrum of muscles obtained  
with the NIRSystems 5000 (trial 1 and 2)(a),  
Foodscan (Trial 3)(b) and LabSpec2500  
(Trials 3, 4 and 5)(c), positioned on a  
common wavelength scale.
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To optimize the accuracy of the calibration, deleting 
of anomalous spectra in the calibration dataset, 
different combinations of scattering corrections, 
and several derivative mathematical treatments to 
reduce the noise effects were applied. Calibration 
equations were developed from reference data of 
all investigated meat quality traits using partial least 

square regressions. Predictive ability of the models 
was assessed by coefficient of determination of 
cross validation (R2

CV) and root mean square error 
of cross-validation. Prediction models from spectral 
data were obtained by using the Unscrambler 
software (version 9.6; Camo A/S, Oslo, Norway).

The results obtained 
Prediction of fatty acid profile of meat: NIR 
calibrations obtained on 148 samples were 
satisfactory (R2 > 0.60) for 6/8 of the major FA, 
6/19 of the minor FA, and for SFA, MUFA, and 
PUFA (Table 1) and were used to predict FA 
content of all 1,150 Piemontese young bulls 
through their NIR spectra.
 
Heritability of fatty acid profile of meat: Estimates 
of h2 for FA predicted by NIR were low to moderate 
(0.07 to 0.21). NIR is a useful technique (cheap 
and rapid) to predict the meat content of several 
FA and FA categories for predicting breeding values 
of animals (Cecchinato et al., 2012).

Prediction of physical properties of meat: NIR 
calibrations obtained using spectra from minced 
samples of M. longissimus thoracis were satisfactory 
for L* (R2 = 0.64), a* (R2 = 0.68), hue angle (R2 = 
0.81), and saturation index (R2 = 0.59), but not for b*, 
DL, CL, and SF (Table 2).

Heritability of physical properties of meat: The 
loss of phenotypic variability varied from 7% for H 
index to 85%, being a function of the calibration R2. 
The loss of genetic variability was sometimes lower 
than phenotypic one and this explains why these 
traits (b*, S, and CL) yielded heritability estimates 
for meat quality predicted by NIR greater than the 
corresponding values of measured traits (Table 2). 
The genetic correlation between measured and 
predicted traits was very high and positive for colour 
indexes, high for drip loss, and negligible for cooking 
loss and shear force. These results indicated the 
possibility of using NIR prediction of colour traits 
and drip loss for genetic improvement of beef cattle 
(Cecchinato et al., 2011). 

R2
CV

h2

IMF 0.82 0.18

Σ SFA 0.79 0.15

Σ MUFA 0.80 0.21

Σ PUFA 0.61 0.19

Major FA: 

C14:0 0.78 0.19

C16:0 0.83 0.17

C16:1 0.82 0.12

C18:0 0.71 0.21

C18:1n-9 0.80 0.16

C18:1n-11 0.70 0.09

C18:2n-6 0.39 -

C20:4n-6 0.01 -

Minor FA:

C10:0 0.61 0.16

C12:0 0.63 0.11

C17:0 0.69 0.21

C17:1 0.73 0.20

C18:2 CLA 0.62 0.15

C20:2 0.76 0.21

1:Other minor FA had RCV< 0.60

Table 1. Coefficient of determination 
of cross-validation for FA analysed by 
GC and heritability estimates for FA 
predicted by NIR in trial 1.
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Table 2. Cross validation (trial 2) between meat quality traits measured with 
reference methods and predicted by NIR, loss of phenotypic and genetic 
variability of predicted respect to measured traits, heritability of measured 
and predicted traits and genetic correlation between them.

R2
CV ΔσP  % ΔσG  % h2

LAB
h2

NIR
R

G:LAB-NIR

L* 0.64 -16 -25 31 26 +85

a* 0.68 -27 -20 32 36 +98

b* 0.44 -42 -6 13 29 +93

H 0.81 -7 -9 63 62 +99

S 0.59 -26 -3 15 23 +95

Drip loss (%) 0.17 -62 -74 24 14 +72

Cooking loss (%) 0.04 -85 -72 5 17 -4

Shear force (N) 0.21 -61 -60 10 10 -10

Calibration of physical properties of intact 
and minced meat using NIT and NIR: The NIR 
transmittance lab. instrument, using narrow spectra 
and set up for chemical analyses, gave unreliable 
predictions for physical meat quality traits when 
spectra were collected on minced muscles (Table 
3). Cross validation improved moving to spectra 
from intact muscles, improved further using a NIR 
absorbance portable instrument on minced meat 
and again on intact muscles (De Marchi et al., 2013).

Prediction of physical properties of intact aged 
muscles using NIR spectra collected on intact 
carcasses after slaughtering: The preliminary 
unpublished results (De Marchi, 2012, personal 
communication) gave low to moderate cross 
validation according to breed of animals and 
especially to the interval between slaughtering 
and spectra collection.

Table 3: Table 3: Cross validation between meat quality traits measured using 
reference methods and predicted by NIT or NIR spectra collected on minced or 
intact muscles (15 muscles per carcass) (Trial 3).

NIT NIR

R2
CV minced intact minced intact

pH 0.29 0.31 0.42 0.62

L* 0.34 0.45 0.55 0.70

a* 0.34 0.37 0.52 0.73

b* 0.14 0.20 0.41 0.60

Drip loss (%) 0.01 0.15 0.12 0.15

Cooking loss (%) 0.12 0.31 0.12 0.38

Shear force (N) 0.01 0.15 0.13 0.34

L* = lightness

a* = redness
b* = yellowness 
H = hue angle

S = saturation index
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The scientific conclusions 
The NIR techniques have some potential for a 
cheap and rapid prediction of meat quality traits 
to be used for genetic improvement of beef 
breeds also on intact muscles and carcasses. 

The next steps 
The next steps will be: i) to extend the prediction 
on intact muscles to chemical properties, 
including fatty acid profile, conjugated linoleic 
acid (CLA) isomers, and cholesterol content; ii) 
to compare lab and portable spectrometers of 
different spectrum extension; iii) to define the 
operational condition allowing an improvement 
of calibrations equations of spectra collected 
on whole carcasses for predicting meat 
quality of aged beef; iv) to study a breeding 
scheme, specifically for beef breeds, aimed at 
incorporating meat quality predictions collected 
at abattoir.
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Value for the industry 

According to our experiences in agricultural CT image processing, especially 
segmentation, it can be concluded that: 

•	Extracting simple statistical descriptors, characterizing the voxel 
neighbourhoods by the descriptor vectors and building multivariate statistical 
models for segmentation can enhance the accuracy of processing.

•	By enforcing connectivity, hidden Markov random fields based segmentation 
methods provide accurate results.

•	Morphological operators can efficiently remove noise from label images;

•	There is need to develop segmentation methods that provide subpixel-scale 
accuracy, preferably using and fitting analytic models to object boundaries, 
instead of the currently applied volumetric approaches.

•	There is also a need to develop segmentation methods that do not depend on 
the exact Hounsfield-units of the images, instead, the relative differences of 
voxel values are used to determine the object boundaries.

Introduction 
Over the last decades, computed tomography 
(CT) has become a general tool for research in 
agriculture. Although several algorithmic solutions 
have been developed for the processing of medical 
images, agriculture requires new approaches for 
several reasons. Unlike in medical issues, where 
semi-automatic methods are used by experts to 
analyze the CT image of one patient at a time, 
agriculture needs the accurate processing of many 
images, to enable the drawing of statistically relevant 
conclusions. Besides the amount of data to process, 
the lack of texture differentiates the processing of 
CT images and medical or simple photographs. The 
aim of processing is also different in medicine and 
agriculture. In medical applications, usually the 

detection of objects or the proper segmentation 
of manually selected regions is required, while in 
agriculture the estimation of volumes and surfaces 
of various tissues is desired. Since a wide variety 
of segmentation techniques is published, the 
choice and adaptation of the proper method for CT 
images is not obvious. In the rest of the paper the 
segmentation techniques that have been applied in 
various CT segmentation problems will be discussed 
and to provide a better impression of the results, 
the methods used with be exemplified via the 
segmentation of a CT image of a hen egg. Figure 1.a 
shows the CT image and figure 1.b shows the ground 
truth manual segmentation. The technical details of 
the developments are described later in this article.

Computed Tomography image analysis 
methods used in Hungary 

G. Kovács1, T. Donkó2, G. Milisits2, Z. Sütő2, E. Szentirmai2 and M. Emri3

 
 
1. Faculty of Informatics, University of Debrecen
2. Faculty of Animal Science, Kaposvár University
3. Institute of Nuclear Medicine, University of Debrecen
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Overview of the Applied and Adopted 
Segmentation Techniques 
In general, machine learning techniques are used 
to build statistical models for segmentation. In 
these approaches the result of segmentation is a 
volumetric label image, that is, specific class (label) 
is assigned to each voxel and the volume of a tissue 
or surface of an object can be determined by the 
sum of voxel volumes or surfaces having the label 
of the object of interest. To build proper statistical 
models, a manually segmented database is required. 
 
Preprocessing. In many image processing 
applications, the first step is some sort of contrast 
enhancement and noise removal to improve the 
accuracy of further processing steps. In general, 
there appears to be little effect of preprocessing 
methods on segmentation. The application of linear 
intensity transformations does not improve the 
separability of tissue classes. To apply global or local 
non-linear transforms which enhance the separability 
of the tissues, the transforms should be able to 
distinguish the tissues which can hardly be done as 
preprocessing, since exactly this is the aim of the 
further processing steps.

Bayesian segmentation. Bayesian segmentation 
methods are based on the estimation of conditional 
distributions of voxel values for class labels. Then, 
the class of further voxels can be determined by the 
Bayesian-rule:

where v refers to a voxel, I(v) and L(v) denotes 
the intensity value (Hounsfield-unit) and label 
of voxel v, respectively. The probabilities of the 
right hand side can be estimated by histograms 
or replaced by the probability density function 
values of fitted Gaussian- or Mixture of Gaussian 
distributions. The advantage of the approach is the 
easy implementation and interpretation, while the 
drawback is the quiet low performance. Figure 1.c 
shows the Bayesian segmentation of the test image, 
when the statistical models are trained using 3 
manually segmented images.

 
 
Hidden Markov Random Fields (HMRF) are special 
probability structures used in a wide range of image 
processing applications (Zhang et al., 2001). In 
general and simple form, disregarding the stochastic 
model behind, the segmentation is turned into 
an optimization problem: the search space of the 
optimization contains all the possible labeling of 
the voxels and the target function is the sum of 
two terms, particularly, the probability of the given 
labeling and a penalty term penalizing the differences 
of neighboring labels. In details, the segmentation is 
the result of the following optimization:  
 
 
 
 
 
where V denotes the set of all voxels, β is the penalty 
parameter and function C gives the number of 
neighbors of v in L, having different label than v.  
When β is set to be 0, we get back the simple, 
Bayesian segmentation. β can be learned from the 
manually segmented database and the optimization 
problem can be solved by some kind of stochastic 
optimization method, like simulated annealing 
(Kirkpatrick et al., 1983) In general, the results are 
better than in the case of Bayesian segmentation, the 
resulting label image contains connected components 
without much salt-and-pepper like noise, however, 
depending on the size of the image, the solution of 
the optimization problem can take a long time and 
the method is quiet sensitive for the selection of 
β. Figure 1.d shows the HMRF-segmentation of the 
test image, using the same statistical model used in 
Bayesian-segmentation.

Features. In several image processing solutions, 
the voxel neighborhoods are represented by so-
called feature vectors to reduce the size of the 
neighborhood. In general, feature can be any 
intensity transform, which maps a new intensity 
to the existing ones, preferably non-linearly. The 
advantage of features is that they represent the voxel 
neighborhood, thus, can contain more information 
than the intensity of a voxel itself. However, one have 
to find the proper features for a given problem, there 
are no best features that fit all the segmentation 
problems. We have tried the simplest statistical 
descriptors, like the mean, variance, signal-to-noise 
ratio, min, max values and invariant Hu moments [3], 
computed in a small radius sphere around the voxels. 

L(v)  =  argmax P(I(v)|c)  =  argmax 
P(c|I(v))P(I(v))

 , 
 cεClasses cεClasses              P(c)

S  =  argmax  
 LεLabelingΣP(I(v)|L(v)) + ßC(v,L),

vεV
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From the feature vectors multivariate Bayesian and 
HMRF models were built and we have found that the 
use of features can enhance both the Bayesian and 
HMRF segmentation models; however, some features 
can have large computing demands. Figure 1.e, 1.f, 1.g, 
1.h show some feature images and Figure 1.i and 
1.j show the Bayesian- and HMRF-segmentation, using 
feature vectors.

Postprocessing. After the segmentation is 
performed, the label image can still be noisy. To 
handle this issue, we have successfully applied 
the tools of mathematical morphology (Najman 
and Hugues, 2010). The complex morphological 

operations, like opening and closing, bright- and 
dark-reconstruction can remove salt-and-pepper 
like noise; however, care must be taken, since these 
morphological operations do not use the original 
image content, at all. Thus, important features can 
be removed from the images, if the size and shape 
of the structuring element is not properly chosen. 
In the case of the egg, the shape of the yolk and 
albumen is both sphere-like, convexly curved, 
therefore the use of sphere structuring elements 
of small radius (3) is reasonable. See Figures 
1.k for the result of bright-reconstruction, dark-
reconstruction and closing applied to the intensity 
based Bayesian-segmentation (Figure 1.c).

Figure 1. Axial, coronal and sagittal slices of the CT image of an egg (a), its 
manual (b), Bayes- (c), and HMRF based segmentation (d). Images of features, 
computed in a spherical neighborhood of radius 3, voxel-wise: mean (e), variance 
(f), signal-to-noise ratio (g), minimum value (h). Segmentation with multivariate 
Bayesian- (i) and HMRF-model (j), using features. Morphological postprocessing 
of univariate Bayesian-segmentation (k). The result of incremental Otsu 
thresholding followed by postprocessing (l).
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Thresholding. Adaptive thresholding methods 
are among the simplest techniques to divide a 
distribution to two parts. In the literature, plenty of 
adaptive thresholding methods are available (Sezgin 
and Sankur, 2004), local and global techniques, 
histogram and image statistics based approaches, 
etc. Although these methods are usually fast, 
one limitation of thresholding is that only binary 
separation can be performed. Another drawback 
is that most of the adaptive thresholding methods 
works only if the foreground and background have 
approximately the same number of voxels. On the 
other hand, one advantage of thresholding is that 
many of the methods do not have parameters, and in 
these cases, no manually segmented databases are 
required. For the parametric thresholding methods 
the best parameterizations can be selected using 

the manually annotated database. In the case of the 
eggs, one of the easiest and most popular method, 
called Otsu-thresholding was applied incrementally: 
first, the empty background and the egg, then, the 
albumen and the yolk are separated. See Figure 1. 
shows the postprocessed results.

Technical details 
From the technical point of view, all the methods are 
implemented in C/C++ as command line applications 
and bash shell scripts are used for fast prototyping 
in Linux operating systems. The segmentation 
techniques are implemented in the open source 
library called OpenIP (Kovacs et al., 2010) available 
at code.google.com/p/openip.
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The scientific conclusions and next steps
Application of CT in agriculture needs the accurate 
processing of many images to enable the drawing 
of statistically relevant conclusions. Following 
acquisition, CT images must be processed in order 
to extract meaningful information; this commonly 
involves a series of image segmentation steps. A 
wide variety of image segmentation techniques have 
been published, but the choice and adaptation of 

the proper method for CT images of animals is not 
obvious. Several image segmentation techniques 
(including preprocessing, Bayesian segmentation, 
feature selection, post processing and thresholding) 
can be implemented. Future work will continue to 
evaluate how these various techniques can be used 
together to streamline the extraction of meaningful 
information from CT scans of farm animals.
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Norsvin imaging methods
J. Kongsro

Norsvin, P.O. Box 504, N-2304 Hamar, Norway

Figure. 1. Application of imaging techniques in pig breeding; providing 
phenotypes as a basis of selection by quantitative genetics or genomic selection.

Value for industry

Our goal is to identify non-destructive, fast, reliable, affordable in vivo methods  
for sampling phenotypes in pig breeding on body composition, meat quality 
and leg weakness. Imaging methods will provide important information about 
the farmed animal, from a clinical perspective to production traits.

•	 Increase the precision of in vivo measurements.

•	Provide applications; from automatic solutions to user-friendly diagnostic tools.

•	The imaging techniques used in pig breeding for Norsvin includes Computed 
Tomography (CT), near infrared spectroscopy (NIR), ultrasound and video 
image analysis (VIA).
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Background
The Norsvin testing system of terminal boars 
include state of art technology for measuring feed 
efficiency, body composition, and meat quality 
and leg weakness. These traits are considered 
the most important traits of a terminal boar, and 
require high quality to phenotypes to get as 
accurate genotypes as possible. The testing system 
include Feed Intake Recording Equipment (FIRE®), 
Computed Tomography for body composition 
and leg weakness, ultrasound combined with CT 
and NIT spectroscopy for meat quality and video 
image analysis for gait scoring and leg weakness. 
The different technologies require an infrastructure 
to deal with image analysis and human-computer 
interactions. Most of the traits is measured 
automatically (FIRE, body composition and meat 
quality). However, some require human interaction, 
like leg weakness scoring using CT. 

Osteochondrosis is monitored and recorded 
manually by using CT, monitoring changes in 
articular cartilage and bone in fore-and hind limbs. 
The aim is to develop an automatic system for 
recording leg weakness based on CT and gait 
scoring using video image analysis. Outside the test 
station, in our nucleus farms, ultrasound scanning 
is used to obtain body composition in the gilts. The 
gilts are the future mothers of the terminal boars 
selected for the test station. This requires a fast and 
efficient system using image analysis which needs 
to be portable and user friendly. More efficient 
systems for phenotype collection in our nucleus 
farms are under development using imaging and 
vision systems. Weighing of animals, counting of 
piglet and recording of animal behaviour are tedious 
tasks which can be done more efficiently. With the 
advent of genomic selection in the breeding industry, 
more robust phenotypes are crucial. Consequently, 
vision and imaging systems can also be applied in 
commercial farms, where it can assist the farmer 
obtaining high profits and increase the focus on 
animal welfare.

Why work is needed
Engineering and sensor development, including 
imaging systems, are playing an increasingly 
important role in automating routine labour 
activities associated with livestock rearing, selection, 
breeding and genomics (Deshazer et al., 1988). 
Imaging or vision systems can provide an addition 
or replacement of observing or measuring animals. 
From production traits like piglet weighing and 
behaviour, to boar selection by the use of CT to 
estimate body composition, work is needed to 
develop both hardware and software applications. 
The hardware needs to be robust and reliable in 
a farm environment. The software must cover 
image processing methods, image analysis, pattern 
recognition and feature extraction. The combination 
of biological knowledge, hardware and software 
development, require interdisciplinary knowledge 
and collaboration. New and innovative developments 
have to challenge established traditional views 
within the field of animal science to overcome the 
challenges of modern breeding methods, size and 
efficiency of animal production and biosecurity.

The methods used
Computed Tomography was introduced in the field 
of animal science in the early 1980’s by Skjervold et 
al., (1981). There have been trials conducted both in 
vivo and post mortem (carcass and meat products) 
since then. Norsvin was the first breeding company 
to apply CT in a large scale testing system for 
breeding boars, replacing dissection of sibs or half-
sibs. The CT provides estimates of body composition 
(lean meat and yield), meat quality (IMF) and leg 
weakness (osteochondrosis). 

Figure 2. The Norsvin CT application. 
Estimation of body composition.
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Ultrasound has been applied for estimation of back 
fat and muscle thickness in Norsvin since the 1960’s. 
Today, ultrasound is used in off-test of sows in our 
nucleus herds, using a B-mode probe for ultrasound 
scanning. Near-infrared spectroscopy is being used 
to predict meat and fat quality of meat and fat 
samples non-selected boars. The results show that 
both meat and fat quality predicted very accurately 
using NIR (Gjerlaug-Enger et al., 2011). 

Video image analysis is currently under development 
to study the movement of pigs related to leg 
weakness. In addition, we are looking into developing 
a monitoring system for piglet weighing in our 
nucleus farms.

The results obtained
There has been a small increase in accuracy when 
replacing dissection with CT. Some results have been 
published by Gjerlaug-Enger et al., (2012). We have 
experienced a higher genetic improvement through:
•	Sampling carcass traits directly from the live 

animal.
•	Higher reliability (increased heritability on carcass 

traits).
•	  Increased number of animals tested.
•	  New traits can be implemented based on historical 

data (images stored in archive).
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The scientific conclusions 
As shown by Gjerlaug-Enger et al. (2012), the carcass 
traits are very heritable measured by CT, achieving 
a heritability of lean meat percentage of 0.5 to 0.6. 
Leg weakness has also increased in heritability from 
0.1 to 0.3 using CT (Aasmundstad, unpublished data 
2012). Meat and fat quality measured using CT is 
under development, and will be published shortly. 
By measuring fat and muscle depth by ultrasound 
more objectively by imaging software, the 
heritability for fat and muscle depth of sows is also 
expected to increase. More work is still needed here. 
Video image analysis is also under development, 
and data is being gathered for analysis. 

The next steps 
The challenge is to extract relevant information 
from complex patterns in pig movement. The 
use of video or vision systems for piglet or pig 
weighing has been proven accurate (Doeschl-
Wilson et al., 2004). The main challenge is to 
ensure the ID and tracking of animals, to confirm 
the identity of the animal being measured. 
Combining vision systems with RFID or other 
tracing technologies is crucial to setup a robust 
and reliable system for measuring animals in large 
scale systems. 

Figure 3. Combining NIR with CT and /or ultrasound 
to obtain in vivo prediction of meat quality.
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Semi-automatic 
3D segmentation 

C.A. Glasbey

Biomathematics & Statistics Scotland, Kings Buildings, Edinburgh, UK

Value for industry

Medical imaging systems can be used to reveal the body composition 
of farm animals, including musculature and distribution of fat deposits. 
This informationis of use in breeding selection and potentially in optimising 
husbandry and market targeting.

Background and why work is needed
Segmentation, to identify specific tissues, is a 
key step in converting digital images into usable 
information. Automatic methods are successful for 
segmentation in tightly specified circumstances, 
such as 2D ultrasound and Computed Technology 
(CT) images of particular breeds of sheep at 
specified anatomical locations (Glasbey and Young, 
2002) and 3D spiral CT using a single scanning 
protocol (Glasbey, 2009). However, these methods 
fail to produce acceptable results if circumstances 
change, such as images of other breeds/ages of 
sheep, or from other CT scanners using different 
protocols, or even images from other species and 
technologies, such as MRI of pigs! The alternative is 
manual segmentation, where boundaries are placed 
on images by human control of a screen cursor. This 
is especially time consuming and tedious in the case 
of 3D images, taking several hours of human input to 
segment a single animal.

Semi-automatic segmentation is a half-way house, 
where some tasks are performed manually and 
others automatically by the computer (see, for 
example, Inglis and Gray, 2001). In 3D segmentation, 
where a series of slices are to be segmented, each 
slice is often very similar to the preceding one. Can 
the computer segment a slice by learning from 
manual segmentation of the previous slice?

The methods used

The answer is yes, an algorithm has been developed 
with the following steps:

• a human operator segments image 1 manually;

•  the computer segments image 2 automatically, 
by mimicking the image 1 segmentation  
(see Fig 1 for an illustration);

•  the operator corrects any mistakes in the image 
2 segmentation;

•  the computer segments image 3 automatically, 
by mimicking the image 2 segmentation;

•  the operator corrects any mistakes in the image 3 
segmentation; etc.
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Figure 1. Illustration of how algorithm mimics the segmentation of one image to 
segment the next one in a 3D image stack, in this case identifying the internal 
organs in a pig’s thorax imaged by CT: (a) image 1 with red lines showing correct 
boundary + perpendicular transects; (b) the same transects superimposed on 
image 2; (c) pseudo-coloured score showing agreement between CT values along 
transects in images 1 and 2 at a range of shifts in alignment, together with smooth 
black boundary showing minimum cumulated score through all transects found 
by Dynamic Programming; (d) this boundary superimposed on image 2, showing 
the algorithm’s attempt to mimics image 1 segmentation.

The results obtained 

The method is very flexible, as boundaries are 
allowed to either outline objects or to specify 
holes within objects, and no prior assumptions 
are made about patterns of pixel values near 
boundaries. The computer algorithm perturbs 
boundaries, and tries to replicate patterns of pixel 
values, from the previous image.

The scientific conclusions

Experience to date indicates a reduction in human 
input time from several hours to a few minutes per 
animal.

The next steps
The basic algorithm is open to many 
generalisations, such as:
•  rules for including/excluding air/bone in 

segmentation;
•  using previous two images and 3D roughness 

penalty;
•  exploiting accumulated database of manual 

corrections.
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Value for industry

•	  New X-ray techniques based on phase contrast and dark field imaging are 
being developed that will allow objects that have similar absorption profiles, 
but different microstructures to be distinguished from one another.

•	X-ray dark field imaging potentially offers a new technique that can visualize 
microstructures like muscle and fibres characteristics and hence might be a 
tool to assess meat tenderness.

•	Establishment of a new centre is proposed that aims to promote a synergic 
alliance between sensor physics, automated image analysis and high capacity 
computing to encourage researchers and SMEs to interact to develop solutions 
for industry.

Background
Product quality control is a vital part of the Danish 
food industries today. High quality products 
constitute the main of part of Danish exports and 
making Danish food industry more competitive. 
Higher quality food requires sensitive and efficient 
techniques that assess the quality early in the 
production process using non-destructive modalities. 
Optical inspection is widely applied but is far from 
sufficient as it only will probe the surface of the 
product. In many applications three dimensional 
techniques, able to analyze the interior of the food 
product are necessary. For instance, in the meat 
industry, quality control is laborious and often 
destructive with respect to the tested sample. 
Therefore the quality control process is often seen as 
a costly exercise comprising spot testing and sparse 
sampling. Techniques are also required to test and 

inspect packaging. Traditional X-ray scanning offers, 
even at relative low photon energies, the penetrating 
power to monitor the inside of a food product even 
inside the final packaging, but often does not have 
the sufficient sensitivity to distinguish subtle details 
as the measurement contrast arises from small 
differences in x-ray absorption given by the atomic 
elements in the sample. We propose to develop 
new x-ray techniques based on phase contrast and 
dark field imaging using the recently developed 
x-ray grating interferometer (Weitkamp et al., 2005; 
Pfeiffer et al., 2008) that will allow different contrast 
mechanisms to distinguish objects that have similar 
absorption, but different microstructure.
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Objectives
Production of safe and high quality food products 
at an industrial scale has been a substantial 
contribution to Danish export for many years. The 
production is automated to a large extend to be able 
to meet the competition from developing suppliers 
from South America and the Far East.  
The competitive strength of Danish food production 
is based on research in most aspects of the entire 
production chain from farm to fork. This research 
includes CT scanning for automated assessment 
of fat and meat composition in pig carcasses, 
and X-ray screening for foreign material to verify 
the highest level of food safety. This work has 
demonstrated the challenges of detection of fatty 
acids in subcutaneous fat tissue and the detect 
ability to detect light plastic fragments from 
broken production tools that might incidentally 
be present in food products. Preliminary results 
show an encouraging potential of detection of fatty 
acid composition, high contrast between cartilage 
and soft bones, even connective tissue may be 
discernable in meat products.

It is interesting to investigate the potential of 
characterizing various quality traits of food products 
in particular meat quality using the newly invented 
grating interferometer setup (Weitkamp et al., 2005; 
Pfeiffer et al., 2008).  

These aspects include tenderness and intramuscular 
fat distribution in bovine meat, subcutaneous fatty 
acid composition of porcine fat and drip loss of 
porcine meat. Magnetic Resonance Imaging (MRI) 
today defines the golden standard for determination 
of such delicate parameters in food. But as the MRI is 
sensitive to the proton content of the material many 
of the interesting meat traits as taste, water holding 
capacity and tenderness are measured as indirect 
parameters. With X-ray phase contrast; however, 
the electron density is directly measured, which can 
directly be linked to the carbohydrate, fatty acid 
and protein composition (proteomics) of the tissues 
(Manohara et al., 2008). 

Furthermore, the new techniques will be tested for 
their ability to detect foreign materials, such as small 
paper and plastic fragments in minced meat and 
hence will be tested towards increased food safety. 
Due to the very high production speed in most food 
industries, the need for high capacity computing 
for image construction and evaluation is huge and 
ever increasing. The implementation of automated 
detection and assessment algorithms are required 
even today and with the emerging imaging modality 
the requirements for fast computing are tripled.

Figure 1. Tomographic slices of porcine fat. (a) Frontal slice through the 
tomographic reconstruction of the absorption contrast. (b) Frontal slice through 
the tomographic reconstruction of the phase. The phase gives clearly higher 
contrast. From Jensen et al., (2010)
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Methodology: New X-ray techniques 
Today X-ray imaging is based on absorption contrast 
as it was in the days of Wilhelm Röntgen more than 
100 years ago. The contrast between different tissues 
of the objects arises either due to higher density 
or heavier elements, both giving higher absorption. 
However, X-rays are electromagnetic waves and the 
index of refraction in biological tissues contains an 
absorption term and a phase term. The refractive 
index can be written as n=1-δ-iβ where δ describes 
the phase term and β the absorption term, The phase 
term δ is proportional to the electron density and is 
about 10-6. δ is a factor 100 larger than the absorption 
term β, which typically is of the order 10-8. The phase 
term hence offers potentially much more sensitivity 
if it can be measured. The phase term is given rise 
to refraction effects, but typical refraction angles 
are very small and are normally only detected using 
partial coherent beams. However, recently a new 
technique using a grating interferometry technique 
from optics has been invented by the groups of Prof. 
F. Pfeiffer in Munich, which makes phase contrast 
and dark field imaging much more practical. We 
have participated in collaboration with the group of 
Prof. Pfeiffer developed the technique and shown its 
feasibility for medical and food applications (Bech et 
al., 2009; Jensen et al., 2010, 2011).

 
In brief, the techniques use a phase grating using the 
Talbot (Weitkamp et al., 2005) effect to produce an 
interference pattern. Placing a sample into the beam 
distorts the interference pattern and the distortion 
is proportional to the derivative of the phase of 
the X-ray beam passing though the sample. Taking 
images a different rotations of the sample a full3-D 
reconstructed of the sample can be obtained using 
standard filtered back Fourier transforms. 
 
The phase grating has a pitch of typically 4 
microns. The interference pattern produced by 
the phase grating has a pitch of 2 microns and 
cannot be resolved by standard X-ray imaging 
devices. Instead, it is measured using an absorption 
grating with about half the pitch of the phase 
grating stepping the absorption grating across 
the interference fringes. The total measured X-ray 
intensity is measuring the absorption, the distortion 
measures the phase derivative and amplitude of 
the interference fringes measures the visibility. 
For samples with a microstructure that give rise to 
scattering, the visibility will decrease. Hence the 
technique can be used to measure the scattering 
from the sample equivalent to dark field imaging 
known from optical microscopy. 

Figure 2. Schematic view of the 
experimental setup. The G0 grating 
acts as a slit array, producing 
parallel line sources. The sample is 
placed immediately in front of the 
interferometer, and the detector is 
placed immediately after. G1 is the 
phase grating and G2 the absorption 
grating. From Bech et al., (2009).

Figure 3. Dark field imaging of the 
fiber orientation in a mushroom slice. 
From Jensen et al., (2010).
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As the scattering arises from the microstructure 
of the sample, X-ray dark field imaging 
potentially offers a new technique that can 
visualize microstructures like muscle and fibres 
characteristics and hence might be a tool to 
assess meat tenderness, see Figure 3. The grating 
interferometer requires partial coherence of the 
X-ray wave beam. This can be obtained by using 
X-ray radiation from large scale international 
synchrotron radiation facilities like the ESRF in 
Grenoble. The quality of the X-ray beam in terms 
of coherence is measured via the visibility of the 
interferometer and large visibility up to 60% can 
be measured at synchrotron radiation sources. 
The limitations of synchrotron radiation are that 
such facilities only exists few places in Europe 
and that access is limited. Furthermore due to the 
high collimation of the beam the field of view is 
limited to a few centimetres at most. Therefore 
these facilities will only be used for high specialized 
research and development.

However, converting a standard laboratory X-ray 
source into a partial coherent source can be 
obtained by placing a fine space source grating just 
in front of the sources (Pfeiffer et al., 2006), see 
Figure 2. Although presently optimised for small 
animals, acquiring a setup for use in the Danish food 
industry will give research in food a competitive 
edge and open the possibility for a more wide 
spread used of the new technique in Danish industry.

Collecting both the phase, dark field and the 
absorption terms in the X-waves introduces several 
new computational challenges. First of all algorithms 
for image reconstruction using phase are currently 
tested with only close-to-perfect signals, in an actual, 
and especially industrial, setting the current image-
construction is not guaranteed to work. Even when 
a more robust methodology is used, the entropy 
in the phase signal is much smaller than in the 
known absorption signal and there will be a need to 
process these signals in real-time for any application 
outside a laboratory. Given that real-time signal 
processing for conventional CT technology is only 
now becoming a reality, the challenge of processing 
phase information in real time is a significant task.

The main focus of the strategic center is to provide 
state of the art solutions to the food production, but 
other research areas inevitably will benefit from the 
work by devoting a work package to dissemination 
of the developed technology. The center will invite 
Danish SME’s and research communities to explore 
this emerging technology as an important part 
of the knowledge transfer. The applications are 
assumed to exploit the potential of the new imaging 
modality with respect to high sensitivity to light 
material composition, high spatial resolution and 
non-destructive measurements. The applicants will 
benefit from the synergic alliance between sensor 
physics, automated image analysis and high capacity 
computing founded in the proposed center.

The scientific conclusion and next 
steps
Over the last five years, phase contrast and 
dark field imaging have undergone a dramatic 
development witnessed by a range of high 
impact publications, and the prestigious Leibnitz 
price 2010 awarded to Prof. Franz Pfeiffer. The 
group at NBI has collaborated intensively with 
the Munich group by extending the range of 
applications in the medical and in the food area, 
including both phase contrast, and dark field 
imaging. Extending this collaboration to include 
a wider range of food products will give the 
Danish industry a unique opportunity to benefit 
from the technology before it is implemented by 
competitors. The collaboration will also train a 
number of PhD students who will be able to apply 
the technique to more industrial applications. 
The new X-ray imaging techniques have made 
significant impact in the scientific world and it is 
expected that new application and apparatus will 
emerge rapidly in particular in the medical area. 
However, applications for food products have 
as large a potential and Danish industry has the 
opportunity to be at the very forefront for the 
benefit of higher food quality and higher food 
safety.
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Animal genetic database
T. Pabiou and K. O’Connel

Irish Cattle Breeding Federation, Highfield house, Bandon, Co Cork, Republic of Ireland

Value for industry

•	The establishment of an unique shared cattle breeding database.

•	The implementation of a data collection and sharing system that eliminates 
duplication at farm and organization level.

•	Development of a genetic evaluation system which identifies, on a worldwide 
basis, those cattle that are most profitable under Irish conditions.

•	The animal genetic database help supporting and promoting increased 
international collaboration in beef breeding, animal health, and genomics.

Background
Over the last thirteen years Ireland has established 
a new infrastructure to facilitate the genetic 
improvement of both dairy and beef cattle. Prime 
responsibility for leading the development rests 
with the Irish Cattle Breeding Federation Society 
Ltd (ICBF) established in 1998 with the objective of 
achieving the greatest possible genetic improvement 
in the national cattle herd for the benefit of Irish 
farmers, the dairy and beef industries and members. 
This development has been funded by a unique 
partnership involving farmers, breeders, service 
providers, service income and Government. 

Why work is needed
The focus of this paper is on the developments that 
have impacted on the availability of data for use in 
creating information essential for effective cattle 
breeding decisions. These have especially included: 
creation of the ICBF Cattle Breeding Database, 
implementation of the Animal Events (AE) data 
collection system, and the creation of linkages with 
other data collection systems.

The methods used
At the time ICBF was formed there were a large 
number of separate computer systems supporting 
aspects of cattle breeding in Ireland. Each had its 
own data collection system and supported the 
information needs of one or other aspect of the 
cattle breeding industry. 

For example, each Herd Book (there were 18 at that 
time) had their own system, each Milk Recording 
organization (there were 8 in 1998) had its own 
system, and Department of Agriculture, Food and 
Marine (DAFM) operated separate systems for 
genetic evaluations and the official calf registration 
and cattle movement monitoring system (AIM-
CMMS). These systems used several different animal 
identifications and held limited cross-references.

Creating the database involved an enormous effort 
to: negotiate agreements for the sharing of data, 
to establish shared data collection systems and to 
consolidate the existing computer files into a single 
shared database. The key principles under pinning 
the agreement between organizations to share data 
are summarized in table 1.
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Table 1. Principles of data and information sharing agreement underpinning 
ICBF database.

The ICBF cattle breeding database supports, through 
the use of a range of new technologies (Cromie et 
al., 2008), the information needs of milk recording, 
herd books, AI organizations and cattle farmers. 
Farmers are able to access their own data in the 
database through the HerdPlus® web service. Figure 
1 illustrates the data sources, information outputs 
and services that are currently supported by this 
database.

It is important to note that Genetic Evaluations are a 
peripheral yet integral element of the ICBF database. 
All data used in the evaluations is sourced from the 
database and all results returned to the database 
from whence they are published and distributed.

The AE data collection system was developed, as 
part of the overall database development, to replace 
the overlapping data collection systems operating in 
1998. This system was built to remove duplication in 
data collection, at farm and organization levels, and 
to ensure all the data required for cattle breeding 
and other official purposes was collected efficiently 
and accurately. 

The AE system collects data on those cattle breeding 
events, e.g. calving, birth, identification, mating, …, 
which are first known to the farmer.  
Both paper and electronic systems are supported. 
The data collected in this way is accessible to those 
participating organizations that provide cattle 
breeding services to the herd.

The ICBF database has been fully operational 
for dairy, beef, milk recording, beef performance 
recording, genetic evaluations and herd books since 
2005. Some 81,000 herds, with 1.8 million calvings, 
representing ninety percent of the entire Irish cattle 
herd, were participating in one or more aspects of 
the database by the end of 2011.

No. Principle

1. Contributors of data to the creation of the database retain “ownership” and can obtain a copy of 
their data at any time.

2. All data originating on farm, and known first to the farmer, is captured through “Animal Events” a 
system controlled by ICBF.

3.. ICBF operates an industry wide network of systems to facilitate the electronic sharing of relevant 
data collected for other purposes. Examples include; inseminations, slaughter data, and sale data.

4. All data in the database is available for research subject to a minimal set of conditions.

5. Genetic evaluations are an integral element of the database.

6. Herd owner’s control service provider access to herd and animal data. 

7. Service providers have access to data and information systems needed by their particular 
businesses for those herds that have granted access.

8. HerdPlus® is a service provided by ICBF to the herd-owner that facilitates access to all data and 
information relevant to the herd in the database.

9. Service fees are set on the basis of User Pays and Full Cost Recovery.
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Figure 1. ICBF database showing data sources, information outputs and 
services to farmers.

The ICBF database has access to data collected by  
a wide range of organizations for other purposes. 
The data collected and stored in the ICBF database 
from these other sources, includes:

•	Calf registrations through DAFM – all calves born 
in Ireland are first registered by DAFM, and only 
then added to the ICBF database. This ensures the 
official EU identification is available for all calves 
entering the ICBF database.

•	Cattle movements, exports and deaths through 
AIM-CMMS ; this eliminates the need for any of the 
cattle breeding organizations to collect this data.  
A nightly data feed is provided to ICBF for  
all movements into or out of herds participating  
in the database.

•	Slaughter data from meat processing plants in 
Ireland : slaughter date, carcass weight, carcass 
grade, fat score and, the two images used in 
carcass grading.

•	Sale data from auction marts. This includes dates, 
weights albeit not always for single animals, 
and prices.

•	Milk records from Milk Recording organizations. 
The ICBF database is an integral part of the 
milk recording and result reporting process that 
operates in Ireland.

•	Artificial inseminations recorded by technicians. 
ICBF has developed a hand-held computer 
system that links directly to the ICBF database  
for insemination recording. This system is used by 
all the main AI field service companies operating 
in Ireland.

•	Linear scoring, dairy and beef, and weight 
recording services. The same handheld technology 
used for AI technicians is provided by ICBF for 
linear scoring and classification services. 

•	Farmer recording through dedicated web screens 
(weights etc).

•	Pedigree registrations: production of pedigree 
certificates and DNA labels.

•	Genomic services: recording of tissue samples for 
DNA extractions.

•	Health monitoring linked with Animal 
Health Ireland.

These linkages ensure no redundancy of data 
recording. The result is a greatly increased 
availability of data to all participants in the 
ICBF database.
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The scientific conclusions
In the last thirteen years the Irish cattle 
breeding industry has undergone a complete 
redevelopment of its data gathering and genetic 
evaluation infrastructure. The key developments 
include: 

•	The establishment of ICBF as a working 
partnership between the organizations involved 
in Irish cattle breeding

•	The establishment of a shared cattle 
breeding database

•	The implementation of a data collection and 
sharing system that eliminates duplication at 
farm and organization level

•	Development of a genetic evaluation system 
which identifies, on a worldwide basis, those 
cattle that are most profitable under Irish 
conditions

•	Supporting and promoting increased 
international collaboration in beef breeding, 
animal health, and genomics.

Irish farmers, research scientists, Herd Books 
and AI Companies have responded by making 
good use of the greatly increased amount of 
information now available. As a result Irish 
farmers are now able to better exploit the 
potential of genetics as a tool for improving the 
profitability of their enterprises.

The next steps
The ICBF database will continue developing 
and adapting to new context for the benefit of 
the whole Irish farming industry (e.g., mobile 
technology).
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Use of biomarkers as tools for tracking 
and tracing meat and meat products and 
to predict and monitor meat quality
Marinus te Pas, Leo Kruijt, Mari Smits 

Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, Lelystad, The Netherlands

Value for industry

•	 Integration of the production chain.  
Increased speed of the production process through the selection of carcasses 
for meat quality shortly after slaughtering.

•	Monitor traits such as recovery from transport stress and the related meat 
quality of slaughter pigs in the slaughterhouse.

•	Prediction of the final meat quality shortly after slaughtering.
•	Measurement of the potential of an animal for a trait (genotype to 

phenotype transition).
•	Tracking and tracing such as proof of the management conditions during the 

life of the animals. For example, proof of the outdoor husbandry of dairy cows 
based upon the product composition in relation to the feed differences: fresh 
grass outdoor vs hay indoors.

Background
Biomarkers are tools to predict, monitor, and manage 
physiologic processes and (economic) traits. They 
can be used in human medicine, but also in science 
and industry. An example of industrial use is to 
predict meat quality either while the animal is still 
alive or directly after slaughter. With this knowledge 
the meat quality can be modulated by breeding 
or in the slaughterhouse by interaction with the 
ageing process. Scientific use is for elucidation of the 
biological processes underlying the development of 
meat quality, both during life and post mortem.

Today genomic DNA markers are increasingly used 
in animal breeding. Current technologies enable the 
use of many – up to several hundred-thousand – of 
such genetic DNA markers. Biomarkers go one step 
further since they are the result of the interaction 
between the genome and the environment.  
Thus, biomarkers can differ in time and location. 
Biomarkers can potentially detect whether an animal  

experienced changing conditions such as housing, 
feed, relating to management and global position. 
Thus, biomarkers have important properties for 
detecting authenticity and tracking and tracing of 
food products, and for predicting related product 
quality parameters.

Several (omics) technologies enable the 
development and detection of biomarkers. We have 
experience in using transcriptomics and proteomics, 
and starting up metabolomics technologies for 
the development of biomarkers. Using these 
technologies we first unravel the underlying 
biological mechanism using bioinformatics and 
advanced statistics. The use of systems biology may 
further show the body-wide effects of the biological 
mechanism. With this information we develop fast 
and easy to run biomarkers test methods, and 
validate these in an independent group of animals. 
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Why work is needed
During the past decade genome sequencing 
technique developments enabled the fast and cheap 
sequencing of individual genomes. Analyses of these 
found an increasing number of genetic differences 
between individuals, called Single Nucleotide 
Polymorphisms (SNP). Nowadays for an increasing 
number of livestock species SNP-CHIPS with tens 
of thousands to hundreds of thousands SNPs are 
available.

This speeds up the search for genetic differences 
between traits. However, many production traits – 
including especially meat quality traits - are only 
partially genetic determined. Some traits even 
have a low genetic component, and most of the 
phenotype is influenced by environmental factors, 
for example the feed of the animal, the management 
(e.g. housing, stress, etc.) of the animal, temperature 
of the environment, etc. Such traits are difficult to 
measure using genetic markers. Biomarkers do not 
measure static differences between genomes, but 
dynamic differences between the expressions of 
the genomes of individuals.

The dynamics can be influenced by all the 
environmental parameters. Thus, biomarkers provide 
a better representation of the present status and 
developments of the trait than genetic markers. 
Therefore, biomarkers can be used to monitor a trait. 
If the biological process underlying a trait is known 
biomarkers can also be used to predict the final 
outcome of a trait. During our work we found that we 
could predict several meat quality parameters with 
good accuracy using our biomarkers. Similar results 
are achieved in biomedicine where biomarkers are 
increasingly used to indicate biological functioning 
of organs in several metabolic diseases.

The methods used
The development of a biomarker is a three step 
procedure. In the first step the need for a biomarker 
is expressed, e.g. by an industry. In a first screen 
the literature is searched for existing knowledge of 
the underlying biological mechanism. When this 
knowledge is lacking in the second step biological 
samples expressing the trait of interest are 
investigated using functional genomics technologies 
(transcriptomics, proteomics, and metabolomics).

Differences in the expression profiles correlating 
with differences in the phenotype of the trait may 
be the first indications of a useful biomarker. During 
this phase bioinformatics, statistical evaluation, and 
systems biology methods are used.

Validation of the results using independent 
samples and – if possible – independent technical 
methodologies are indispensable. If a biomarker 
is confirmed and validated the final step is to 
prove functionality in an implementation phase.
Especially in the latter phase innovative methods 
are required to measure the biomarker on site, in 
line, real time. Technological innovative SMEs are 
presently developing such (fully automated) tools. 
Furthermore, measuring the biomarkers without 
laboratory skills comes within reach. 

The results obtained
Biomarkers are molecules indicating the present 
status of a biological process. Biomarkers need to 
be quantitatively measurable. The biomarkers were 
developed using transcriptomics and proteomics 
techniques, analysed using bioinformatics and 
statistical methods, and validated using independent 
other pork production chains and techniques. 
The results show that especially meat colour, 
ultimate pH and drip loss can be predicted based 
upon biomarkers. For the latter two meat quality 
parameters we obtained an average predictability 
of about 50%, but with a maximum predictability 
of up to 80% using a combination of 20 individual 
biomarkers, each with a small effect, but with a 
higher predictability if combined. This means that 
when measuring biomarkers and later verification 
with real measured drip loss and ultimate pH the 
biomarkers were correct in 80% of the samples. 

Transport of slaughter pigs to the slaughterhouse is 
stressful for the pigs and stress deteriorates meat 
quality. While it is known that resting the pigs 
restores meat quality the optimum length of the 
resting period is unknown. In an experiment pigs 
were exercised on a treadmill for approx. 30 minutes 
as a model for transport stress, and rested afterwards 
for 0, 1, or 3 hours. The results were compared with 
unstressed pigs. Proteomics of muscle samples 
showed that several biomarkers indicated 
simultaneously the effect of stress (exercise), resting 
time, and meat quality. Monitoring the expression 
level of biomarkers such as those indicating stress, 
resting time, and drip loss for example can be help  
to optimise resting time and meat quality.
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The scientific conclusions
Biomarkers can highlight the biological 
mechanisms underlying all production traits. 
Knowing the biological mechanisms provides 
the possibility to monitor a trait by measuring 
the status of the biological mechanism via 
measuring the expression of the molecules 
involved. Furthermore, it offers the possibility 
to change the trait by changing the expression 
of the biological mechanism. There are multiple 
ways to do so, e.g. breeding changes the genetic 
capacity for a trait, nutrition changes the 
expression of genes that changes the expression 
of the biological mechanism in which these genes 
act, etc. Especially the latter way of affecting a 
trait requires the knowledge of the underlying 
biological mechanism.

The next steps
A number of research project during the past 
decade focussed on developing biomarkers 
for an increasing number of traits. As a result 
of this the number of biomarkers available has 
increased. However, quite often good validation 
of biomarkers is lacking due to the necessity of 
using (large) independent sets of samples with 
adequate phenotypic measurements of the traits, 
which is expensive. For a limited number of 
biomarkers these requirements have been fulfilled, 
and the first experiments aiming to implement 
the biomarkers are on the way. For the near future 
validating and implementing of biomarkers will 
be important to prove their importance for the 
livestock industry.
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Individual animal traceability from  
farm to boning room – A case study 
Malcolm Buchanan

Silver Fern Farms Ltd. New Zealand

Background and introduction
Silver Fern Farms (SFF) is a Farmer co-operative 
with 20,000 suppliers, 22 sites (17 slaughter) – Beef, 
Venison, Lamb with a turnover of €1.2b. We process 
30% of all Beef, Sheep, Lamb & Deer in NZ.
Opportunities for improvement in the value chain 
lie on the farm through improved productivity, with 
better feedback of processing information from plant 
to supplier leading to improvements on farm and at 
the processor. The key to this is moving the focus to 
individual animals & understanding the variability. 
The main focus for the last few years has been the 
PGP “Primary Growth Partnership” project. PGP is 
a government-led strategy for the whole primary 
production sector (Figure 1).

SFF joined up with Landcorp (largest farming 
company in NZ- government owned) to successfully 
propose a PGP project worth total of €90M over 
7 years (45% of that from SFF). FarmIQ Ltd. is the 
company formed to run the project and to develop 
the database to collect all the data. The project calls 
on outside expertise for R&D.

Traceability as an enabler of 
other technologies:
SmartStim – Intelligent electrical stimulation 
(developed by Carne Technologies)  

•  Electrical stimulation of carcasses post dressing 
applied whilst the carcass is on a load cell. The load 
cell measures the muscle response to the electrical 
input, and predicts the ultimate pH of the carcass. 

•  Electrodes in the stimulation tunnel are individually 
controlled to control the ultimate pH.

•  Carcass tracking essential for this and RFID readers 
are used at the entrance of the stimulation tunnel.

Figure 1. The structure of the primary 
growth partnership programme, that 
has an investment of €90M over  
7 years (45% of that from SFF).
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The lamb primal cutting machine needs objective 
measurement because the cut positions vary 
according to the carcass conformation. Rib position 
and angle needs to be ascertained by X-Ray (Figure 
2). All these data collected can be fed back into the 
carcass database because of RFID skid tracking. We 
are looking at DEXA development for meat/fat/bone 
proportions. We are X-Raying and analysing in real 
time at chain speeds of 30/minute (two X-rays).  
RTL robotic technologies Ltd is joint venture 
between SFF and Scott Technologies. 
 
Collaboration is underway with AgResearch on 
near infrared (NIR) spectroscopy for beef and 
with Massey University on lamb. Agresearch are 
applying NIR on pre rigour beef within 60 minutes 

of slaughter to predict ultimate pH, colour and 
tenderness. The Massey work is on lamb loins 24 
hours after slaughter for input to genetics programs.
RFID trays are being trialled to measure yield of 
individual cuts from individual animals. Cuts can be 
related back to animal ID. This is a trial set up in one 
of our development rooms, and is a joint venture 
with SCL Ltd. A Marel cut tracing system has also 
been commissioned at the new TeAroha beef plant 
to compare with the tray-based system.

Silver Fern Farms are not convinced that there is 
a business case to trace cuts to market, because 
carcass identity is lost downstream and because 
there is currently no regulatory requirement or 
sufficient customer demand.

Figure 2. A screenshot of the primal cutting machine that uses X-ray to determine 
the position and blade angle of robotic primal cutters that split the carcass into 
legs, middles and forequarters.
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Where does all the data end up?
Farm IQ is the company set up to create a 
demand-driven integrated value chain for red 
meat that delivers sustainable benefits to all 
participants: farmers, processors and marketers. 
It brings all the data together into one database. 
Farmers can cut & dice the data in many ways 
to look at all aspects. The on-line interface is 
working now with our 400 pilot farms, and will 
expand up to 7000 farms and beyond.

NAIT - National Animal Identification & Tracing. NAIT 
Ltd is an industry-owned government sponsored 
non-profit company implementing the NAIT scheme. 
It is mandatory for cattle (1st July 2012) & Deer (1st 
March 2013).

NAIT maintain database recording all animals, 
location, PICAs & movements. Every animal has an ID 
– tagged at birth. Every property has an ID (Linked 
to Ministry of Primary Industry “farms-on-line” 
property mapping system”).

It is primarily for movement tracking for quick 
response in the case of a biosecurity threat such as 
disease outbreak & for continued market access. It 
is a system for recording physical movements and is 
built around the EID tag.

Traceability in the processing plant: 
Beef
On farm, all farm metrics (weight gains, forage, 
genetics etc.) sent to Farm IQ are indexed by RFID 
tag. Origin and destination information is required 
by NAIT for all movements to the slaughter plant via 
sale yards.

At truck unload, the tags are read and animals 
(and tags) are sorted into herds. After slaughter 
as carcasses join the slaughter line, the tag is read 
again and linked to RFID trolley or skid. The chain 
is interlocked so that every tag must be read or 
manually entered. Along chain there are RFID trolley 
readers at legger & grader points. As the carcass 
moves out of the chiller and into the boning room, 
it moves over a load cell with an imbedded reader. 
The cold carcass weight is recorded for boning room 
yield calculations & weight loss statistics.

Traceability in the processing plant: 
Deer
Deer carcasses yield information is determined using 
a weigh rail boning technique. Deer primals are 
usually taken off the carcass in the same order every 
time. This allows cuts to be weighed by subtraction 
while the carcass is hanging on the rail as each scale 
has an imbedded RFID reader. The system is still 
under development, but there are plans to implement 
primal weight recording at all deer plants in the near 
future. Initial trials were based on manual tracking, 
but were unsuccessful, RFID solved this problem.
 
Traceability in the processing plant: 
Sheep, lamb & calves
Currently (2012) EID is not mandatory for sheep in 
New Zealand, but EID tags are issued by Silver Fern 
Farms to participating farmers who wish to make 
use of EID technology. Farmers enter on-farm data 
(e.g. genetics, age, breed, irrigation, fertiliser, weight 
gains, forage types etc.) that are linked to the tag ID.

Upon arrival at the processing facility 
The first sheep in mob has a high-frequency RFID 
tag attached, after scanning in yard. After slaughter, 
sheep EID ear tags are scanned read on the chain 
position (two readers to cope with breakdowns or 
misses). After scanning the tag is removed as the 
carcass progresses along the process line. The mob 
number & data are assigned to the slaughter line 
position at this point. Data are in a shift register to 
simulate the real chain. It was found that when RFID 
readers are on a spreader, the height range is small 
(300mm) which enabled a smaller antenna that 
produced less noise to be used. 

As the carcasses progress along the processing line, 
all attachments move in unison (Synchronized) –
indexing the proxmity moves all data, right along the 
chain, two readers are used at the inspection station 
and at the weigh scale to avoid misreads. Data in a 
shift register to simulate the real chain. For detained 
carcasses, once they pass the detain switch, data is 
in a virtual “bucket”. As carcasses enter the boning 
room, the RFID skid is read, the weight recorded, 
and the validity of that item number is checked. 
Carcasses are grouped into batches, and electronic 
documentation is recorded from carcasses that have 
come from off–site.
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Equipment selection: EID tag readers
Tag readers from two manufacturers, one Australian, 
one NZ – Aleis & SCL have been trialled and 
displayed similar performance.
EID Tags: EID tags for Beef & Deer are defined by 
NAIT. There are three main manufacturers in NZ, all 
tags must be approved by NAIT. There are several 
numbering schemes and several formats which 
makes it difficult for manual entry. The same tags 
were selected for sheep so the existing readers could 
be used.
Skids: Existing skids which was on the market were 
incompatible with existing systems at processing 
plants, and due to their construction would rapidly 
break and wear. The challenge was to insert tags into 
existing skids which would work while surrounded 
by steel, in an electrically noisy environment. A 
solution was found in collaboration with SCL Ltd. 
Where skids were punched to create a hole for the 
tag, then tags were injection moulded into the skids. 
Injection moulding is done on site with our own staff 
so that production is not affected. The total price to 
tag a skid is around €5 each. Some plants have up to 
45000 skids; examples are shown in Figure 3.

Control equipment
20 years ago the company decided to use industrial 
electronic equipment based on programmable logic 
controllers (PLCs) and industrial touch screens rather 
than PC-based solutions for carcass grading systems 
and data input. This philosophy has been expanded 
to incorporate traceability inputs. The system uses 
Rockwell PLCs with distributed I/O and Rockwell 
touch screens running on Ethernet/IP which is very 
reliable; few maintenance problems are encountered 
as because technicians are very familiar with the 
technology. The system is very fast and there are 
plenty of interface options for scanners, scales, 
printers, touch screens, RF readers, pin stops, chain 
interlocks etc. All software is developed in-house, so 
any required changes can be made very rapidly.

Skid databases
Because there are large numbers of sheep and lambs 
being processed, a PC-based SQL database is used. 
The PLC will query database over a network, and 
data is typically returned in 0.2 seconds. Speed is 
important for real time actions such as rail switching 
for carcass sorting etc.

There are smaller numbers of cattle and deer being 
slaughtered so data can be held in PLC (hot bone beef 
plant only has 350 skids). This system has a millisecond 
response time and no reliance on a commercial 
network. A further advantage is that the skid ID does 
not need to be known by any other system.

Challenges:
•	 Never attain a 100% read rate, 99.95% on EID 

skids.

•	 Ear tags – sometimes damaged but usually 
because of incorrect application.

•	 If two skids are on one attachment, cannot read 
either skid.

•	 Most of our installations are surrounded by steel.

•	 Tag die-off, a high rate at first then slows but  
still 0.5%.

•	 Interference – electrical noise – especially VSDs 
and electronic ballast fluorescents plus other 
readers in the area (portable wands or other 
fixed readers) and even other tags  
(in pockets etc.).

•	 The larger the antenna, the more susceptible it 
is to noise. Antennas must be large for beef and 
deer, SCL have developed an antenna comprising 
multiple small antennas, multiplexed.

•	 Skid speed - manual verses mechanised chain.

Figure 3. RFID skids that can be used 
to main carcass traceability.
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Value for industry

•	There are a range of Electronic Identification (EID) options for the industry, 
and it is important to evaluate the strengths and weaknesses of each option.

•	Scotland’s Rural College are currently evaluating an alternative ultra-high 
frequency option with other commercial and academic partners to establish  
the potential performance benefits.

Background and introduction
Electronic Identification (EID) ear tag application 
has been a requirement in the sheep sector since 
January 2010 under EC 21-2004. The standards 
adopted by EC 21-2004 are ISO 11784 and ISO 11785. 
These specify both the technical concept for radio 
frequency (RF) identification (ISO 11785) and also the 
structure of the radio-frequency identification code 
for sheep (ISO11784). These are Low Frequency (LF) 
inductively coupled devices operating at 134.2 KHz. 
All passive EID devices use RF energy to excite the 
transponder. This can limit the range at which they 
may be read, especially inductively coupled devices.

A number of application areas do utilise LF RFID 
effectively in cattle farming, such as automatic 
weighing, shedding, milking and automated 
recording of individual feed intake and other close 
range systems. Apart from the benefits which can 
be gained from EID for cattle on-farm management 
there is also a considerable interested across the 
world on the question compulsory EID tagging 
for the cattle sector. For example, New Zealand 
introduced the mandatory electronic Identification 
using LF RFID in cattle on the 1st of July 2012 (Nason, 
2011). Other countries already operating a mandatory 
system are e.g. Australia (Nason, 2011), Canada 
(Sundermann and Pugh, 2008), Uruguay (Swedberg, 
2008) and Denmark (Swedberg, 2012). 

However, newer alternative ultra-high frequency 
(UHF) transponder technologies are showing 
significant promise. They are used in other industries, 
and commercial implementations for bovines are 
starting to appear on the market.

UHF Technology
UHF technology has improved significantly within 
the last 10 years, becoming a useful technology, and 
adopted broadly for tracking goods in the supply 
chain (Pugh, 2004). It also became an interesting 
technology to be considered for livestock purposes. 
New Zealand, although opting for the LF option 
for their cattle, conducted trials to investigate the 
early application of UHF RFID technology for animal 
tagging looking at three different species, including 
cattle (Sundermann and Pugh, 2008). 

UHF ear tags potentially have a number of 
advantages. The read-range is much higher (in the 
order of metres read compared to decimetres in LF 
RFID). This makes UHF more adaptable to reading 
off the identifications at commercial locations such 
as auction marts, abattoirs, animal transport vehicles 
etc. The UHF transponders themselves are capable  
of storing information as opposed to just containing  
a unique identification code, and data transfer rates 
are orders of magnitude faster. 

UHF technology implements anti-collision as 
standard which means that multiple tags can be 
read simultaneously, for instance a batch of animals 
passing under through an opening would not require 
singulation to be read effectively.

The antenna reader devices can also write 
information to these devices when an animal passes 
within range. So in future, management information 
could be applied and stored on individual animal 
tags, and subsequently retrieved directly from 
the transponder. Data such as recorded weight, 
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medications applied, movement history, breed, 
sex and date of birth etc., could all be potentially 
stored on the tag, and conveniently retrieved where 
appropriate. SRUC is currently conducting a trial to 
validate performance of the read/write capability in 
farm and other situations.

There are also appropriate UHF handheld readers 
available on the market which can be very useful 
for on-farm management purposes to read the 
UHF ear tags and also to write to them. However, 
these handheld readers are not specifically made 
for the agricultural market but for other industrial 
supply chains. 

EID technology is moving fast, and new opportunities 
will arise due to increasing performance and reduced 
cost for UHF transponders and reading devices. 
The advantage of this technology is that it is used 
so broadly across different industries that a fast 
developments and implementations may 
be anticipated. 

In Scotland, ScotEID (www.scoteid.com) runs an 
extensive field study of electronic tagging and 
under the current Phase III of the pilot project, an 
evaluative field testing study of UHF tags alongside 
LF equipment in cattle is currently underway (Moxey, 
2011). Moxey states that inclusion of UHF technology 
in the pilot project is because UHF systems are 
capable of accurately reading multiple tags at a  
much faster rate and greater range. 

There are already two USDA approved UHF 
cattle tags commercially available on the market 
(Eriginate’s eTattoo tag and Hana Innosys tag; 
Figures 1 a and b). Figure 1 b shows the eTattoo 
tags, which have the same size and shape as a 
conventional Size 5 cattle tag. The Hana tag has a 
slightly different shape.

Figures 1 a and b. Dairy cows tagged in the right ear with Hana Innosys UHF 
tag (a) and Eriginate’s eTattoo ear tag (b).

The eTattoo ear tag was tested over a period of 6 
months (Dairy White Paper, 2010) and the findings 
showed that the tags with a Sirit reader system can 
achieve greater than 99% tag capture in a 19 foot 
alleyway with 4 antennas placed 12 feet overhead. 
However, the report states that body masses may 
have more easily blocked a successful read of a 
tag and these findings are important and indicate 
that cattle behaviour can also affect the ability to 
successfully capture the tag ID and not simply size 
of the reading zone.

Brazil is also trialling UHF technology for the use 
on cattle and water buffalos (Swedberg, 2010) 
using Eriginate’s eTattoo dangle tag. The water 
buffalos were specifically chosen to test the tag’s 
durability and they performed well, as reported 
by Swedberg (2010). 

a b
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The scientific conclusions and next steps

Overall, when reviewing literature on bovine EID, useful applications of electronic tagging can be found 
and are more and more used on farms. A number of countries have already made electronic tagging 
compulsory. Those countries usually opted for the LF technology. The already high number of LF ear 
tags and boluses in the livestock sector might be seen as a stumbling block for the introduction of 
UHF. However, both technologies can easily be operated along side each other because there are no 
electromagnetic issues running them in parallel. 

The UHF technology is developing fast on a global scale across a various industries which give 
the technology an innovative momentum. The advantages of UHF ear tags make them certainly 
interesting for the bovine sector and the few reports which are already published shine a very 
favourable light on the technology so far. 
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Value for industry

•	UHF-RFID is useful in pig breeding and production.

•	The reading distance is approximately 2 meters.

•	GS1 is the best data standard for UHF-RFID.

•	There are still some challenges for reading RFID at the slaughterhouse.

Background and introduction
Currently, most cattle in Denmark are tagged with 
low-frequency (LF) ear tags, as is required by federal 
mandates. Meanwhile, farmers are not required to 
track their pigs electronically, but many have also 
tried the LF tags in order to improve their visibility 
into each pig’s whereabouts, and to provide an 
automated record of every animal’s history. With LF 
tags, it is not possible to read many pigs at the same 
time or read tags from a distance. UHF technology 
makes it possible to read tags simultaneously at a 
greater distance.

The primary goal of the project was to develop 
the ear tag for use in pigs and to test both 
stationary readers and handheld scanners under 
normal production settings at the farm and in the 
slaughterhouse.

Additional goals were also to find the best RFID 
standard for identification, and develop the IT-system 
for data handling and tracking.

Why work is needed
Through setting up a system for identification and 
tracking of pigs, the eventual profit will depend on  
to what extent the data generated by the system,  
will be utilized in the different parts of the production 
process from birth to slaughter. Individual pig data 
could be: birth place, removals (date and physical 
location), medical treatments, production traits, 
slaughter quality etc. 

The methods used
Five breeders were involved in the farm testing and 
one slaughterhouse. One of the most importing 
points in the project was to develop a new ear tag 
based on UHF RFID, which will be necessary for: 
•	 Multiple reading.
•	 Longer reading distance > 5 meters.

Reading at the farm was tested both with antenna  
at the wall, at the ceiling and a handheld antenna  
for individual reading. The ear tag used in the test  
is shown in Figure 1.

The partners in PigTracker are: Pig Research Centre – Danish Agriculture & Food Council, Prosign RFID,  
RF-Labeltech and DMRI- Danish Technological Institute.

PigTracker has received support from the Danish Ministry of Food, Agriculture and Fisheries.

For more reading see the projects homepage: www.pigtracker.dk
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The results 
The reading distances during field test at the farms 
were up to 2.5 meters with the stationary reader and 
not more than 1 meter with a handheld reader. When 
the ear-tag is clean it is easy to read and the reading 
skills are close to 100%. The reading ability was 
reduced with dirty tags, and moreover it is necessary 
with air between the tags and the reader, because 
ultra-high frequency radio frequency is not capable 
to penetrate body tissue.

The investigation at the slaughterhouse showed 
it is more complicated to use the UHF tags in this 
environment. At arrival it is very difficult to read 
due to all the steel in the area, and it was also very 
complicated to find a place to mount the antenna 
in a Danish abattoir.
 

The readers were placed just after de-hairing (Figure 
2) to combine the ear-tag to the slaughter ID at the 
gambrel. 5-10% at the tags was loose during the 
slaughter process and due to the UHF tags it is more 
complicated to be sure to read the right tags. Some of 
the tags are not able to read due to water inside and 
the antenna must be in plastic box to protect under 
cleaning. This will also lower the reading distance.

Figure 1. The developed eartag. 

Figure 2. Reading the ear tags after 
scraping at the abattoir.

Figure 3. Dirty eartags can be  
difficult to read.
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IT System structure
PigTracker used the GS1 EPC standards for the unique 
identification of the pig and the location, and for the 
exchange of data between the reader and the central 
server, instead of the existing ISO 11784- and ISO 
11785-standards, which currently are the standards for 
livestock identification. 

This system:
•	 Considers each pig as a individual trade  

item  SGTIN.
•	 Considers each farmer as a location  GLN.
•	 Considers each herd and lairage as a serialized 

number within the location  SGLN.
•	 Will be able to handle approximately 268 million 

individual numbers.

The scientific conclusions and next steps
UHF-RFID is useful in pig breeding and production and special for the pig producer it is easy to know 
the numbers and placement at the pigs in each farm. The reading distance is approximately 2 meters and 
the best place of the antenna will be in the ceiling over the area where the pigs had to be moved from 
one place to another. GS1 is the best data standard for UHF-RFID, and is already a well-known standard 
in other industries. There are still some challenges for reading at the slaughterhouse, and to use the UHF 
technology in the best way.

Figure 4: The IT system structure and the 
different stakeholder’s part in the system:

•	 Storage of data from each farm 

•	 Regulatory requirements in relation  
to the tracing, hazard, environment

•	 Trade in live animals between producers  
in Denmark and for export 

•	 Communication between producer  
and slaughterhouse

Figure 4. Dataflow and sequence

All registrations in the system occur when a 
physical event happens, like moving the pigs, 
weighing or other treatment.  
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