

Al₂O₃ COATINGS

Alumina coatings, with the chemical symbol ${\rm Al_2O_3}$, can be electrically insulating, chemically inert, very wear-resistant, and stable at elevated temperatures, depending on the crystalline phase and the deposition temperature. Since not all substrates tolerate a high process temperature, both a low and a high temperature version of ${\rm Al_2O_3}$ have been developed. If needed, the ${\rm Al_2O_3}$ coating may be combined with a TiAlN binding layer, which is converted into the ${\rm Al_2O_3}$ coating. This combination results in an improved adhesion to the substrate facilitated by the TiAlN adhesion layer.

Alumina coatings, with the chemical symbol Al_2O_3 , can be electrically insulating, chemically inert, very wear-resistant and stable at elevated temperatures.

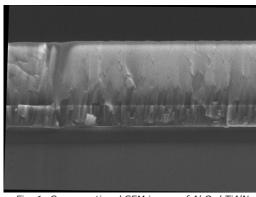


Fig. 1: Cross-sectional SEM image of Al_2O_3 / TiAlN

PROPERTIES

Low-temperature LT-Al ₂ O ₃		
Deposition temperature	~250 °C	
Hardness	9-11 GPa	
Thickness	E.g. from 4-6 μm	
Structure	Amorphous	
Chemical stability	Not stable in alkaline solutions	
Good electrically insulating properties		

High-temperature HT-Al ₂ O ₃	
Deposition temperature	~530 °C
Hardness	19-21 GPa
Thickness	E.g. from 1-3 μm
Structure	Gamma Al ₂ O ₃
Chemical stability	High
Good electrically insulating properties	

and high wear resistance

Al₂O₃ COATINGS

BINDING LAYER

Alumina coatings can be supplied with and without a binding layer on electrically conducting substrates as well as on insulating substrates.

APPLICATIONS

 $\rm Al_2O_3$ coatings are well suited as electrical insulators – especially in applications where electric insulation is needed in a sliding configuration. Other application areas could be sealing faces moved relative to each other or in connection with valve seats. Alumina coatings are also known to have non-stick properties towards various liquids and melted metals due to hydrophobic surface properties.

Fig. 2: XRD patterns of high temperature (blue) and low temperature (red) ${\rm Al_2O_3}$ / TiAlN coatings