Managing massive wind integration in islands with battery storage

Terji Nielsen

Head of R&D department Dipl.Ing. E.E. (Hons), MBA Renewables

- General about SEV and SEVs Green vison
- Renewable resources in the Faroe Islands
- Challenges with integration of wind in isolated power systems
- Battery system in Húsahagi Wind Farm

Faroe Islands

Faroe Islands

• General data:

- 18 islands (17 are populated)
- 50.000 inhabitants
- Area of 1.399 km²
- Main export: Fish and fish products

Electrical Company SEV

- Non-profit, founded 1st October 1946
- 100 % owned by all Faroese municipalities
- Vertically Integrated Company
- Joint and several price structure
- Isolated Hybrid Power System
- Monopoly on grid operation (transmission & distribution)
- "*De facto*" monopoly on production (98%)
- *"Micro isolated system" in EU terms* (< 500 *GWh in 1996)*
 - Directive 2009/72
 - Derogation from relevant provisions in different chapters about unbundling, third party access etc.

Fossil fuel Powerplant

- Hydro Powerplant
- 60kV Substation
- 🛧 Windturbine
- _____ 60kV
- _____ 20kV
- 10kV
- 6kV

Energy Mix 1954 - 2015

6

SEI

Main drivers for renewable energy in the Faroe Islands

Carbon free electricity by 2030

Assumptions:

- 2% increase in consumption annually
- Linear electrification of Heating 2016 2030
- Linear electrification of transport on land

Renewable resources in the Faroe Islands

Q

Renewable resources

Average wind speed: > 10m/s

Precipitation: > 1284 mm/year ^{DK: 712 mm/year} NO: 1000 mm/year

Peak tidal velocities: ~ 3.5 m/s

Average sun hours: ~ 1000 hrs/year (DK: 1495 hours)

Correlation between the resources

Wind energy

-

High and variable windspeeds

Renewable energy duration curve 2015

100% RE generation

The Neshagi Wind farm

Project specification:

- 3 pcs ENERCON E44/900kW (2,7MW)
- Capacity factor: 45%
- Annual production: 10,6 GWh
- Building phase: 2011-2012

Economical figures:

- Total cost: 3.5 MEUR
- Oil savings: 2.300 ton/year
 - approximately 1 MEUR/year

Carbon footprint:

• Annual CO₂ reduction: 7.000 ton/year

The Húsahagi Wind farm

Project specification:

- 13 pcs ENERCON E44/900kW (11.7MW)
- Capacity factor: 42%
- Annual production: 41 GWh
- Building phase: 2013-2014

Economical figures:

- Total cost: 13,6 MEUR
- Oil savings: 8.000 ton/year
 - approximately 3 MEUR/year

Carbon footprint:

Annual CO₂ reduction: 28.000 ton/year

Challenging weather conditions

Batteries to mitigate the intermittency of Wind Power

Schematic overview of battery system

Battery system specifications

• Key features:

- 2 Intensium® Max 20" containers
- DC bus 10" container
- Nominal 620V DC
- 700 kWh
- 2.3 MW
- ENERCON 2.3 MVA power conversion and control system (40" container)

• Key benefits:

- Enhanced grid stability
- Smoothing ramp rates
- Frequency control
- Minimizing curtailment

Battery system in Húsahagi, Faroe Islands

Battery system in operation

22

SE

Battery system in operation

SEV

Utilisation of Húsahagi Wind Farm

Curtailment in 2015: 22% Curtailment in 2016: 12% Curtailment in 2017: 7%

Conclusion (after 1.5 years operation)

- The installed battery system does mitigate the variability of the intermittent wind power
- Utilisation of the wind farm has increased since the installation of battery storage.
- If we assume that the increased utilisation displaces the same amount of energy production from fossil fuel generation, the payback time on the BESS capital costs are approximately 4-5 years.
 - Cost of 1kWh produced by oil used in the payback time calculation: 0.09 €/kWh

" We simply must balance our demand for energy with our rapidly shrinking resources. By acting now we can control our future instead of letting the future control us"

Jimmy Carter 1977

Thank you!

Terji Nielsen

Dipl.Ing. E.E. (hons) MBA Renewables <u>tn@sev.fo</u>

