

Focus on the control and simulation setup

Appendix B:

Description of the

OPSYS test rig

software

 –

Danish Technological Institute

Title:
Appendix B: Description of the OPSYS test rig software

Prepared for:
EUDP

Prepared by:

Danish Technological Institute

Teknologiparken
Kongsvang Allé 29
8000 Aarhus C
Refrigeration and Heat Pump Technology

October 2016
Author: Torben Green

And

Aalborg University
Section of Automation and Control
Fredrik Bajersvej 7C
9000 Aalborg

February 2017
Author: Kasper Vinther

Danish Technological Institute

3

Table of Contents

1. Introduction .. 3

2. Control and communication setup .. 4

2.1. The simulation pc .. 5

2.1.1. Data logging and data sources ... 5

2.1.2. Data of interest .. 5

2.1.3. Python files ... 6

2.2. The SIP .. 7

2.3. The Trend controllers ... 8

2.4. The Agilent logger ... 8

3. Test procedure .. 8

3.1. Start-up procedure .. 8

3.1.1. Pre-test procedure ... 8

3.2. Post-test procedure ... 9

4. List of known issues ... 9

5. Data processing scripts ...10

5.1. Optional arguments ..11

Appendix 1 Quick guide on how to operate the OPSYS test rig 12

1. Introduction

The purpose of this document is to disseminate knowledge regarding the test rig used in

the project “P2003908_Optimering af gulvvarme og vp systemer”, hereafter referred to as

OPSYS.

The document is structure in the following way:

 Section 2 gives an in-depth description of the control and simulation setup, includ-

ing a description of the communication set along with a description of the structure

of the Python source code.

 Section 3 presents the proposed test procedures to be followed when working with

the test rig.

 Section 4 presents a list of known issues.

 Section 5 presents a short manual for the data processing scripts

 Appendix 1 contains a quick guide on running the OPSYS test rig

Danish Technological Institute

4

2. Control and communication setup

This section provides a description of the control and communication setup for the test rig.

Concerning control, communication and data acquisition, the test setup comprises of four

different entities.

1. The Simulation pc

2. The SIP

3. The Trend controllers

4. The Agilent logger

Figure 1: Communication and data acquisition setup

The four entities are all depicted in Figure 1, which illustrates the communication and data

acquisition setup.

Danish Technological Institute

5

2.1. The simulation pc

Figure 1 shows that the Simulation pc is running three different tasks, which are:

1. Executing the python code which handles the following tasks:

a. Running the simulation of the house

b. Running the high-level control algorithms

c. Running the Modbus server to enable communication with the Trend con-

trollers through the SIP Modbus interface box

d. Data logging in a csv-file where the file name is based on the data and time

when the Python script pymodbus_server.py was started. File name struc-

ture: “simRlog<YYYYmmDD>_<HHMM>_ID<#>.csv”

2. Running the CTS 963 software, which handles the following tasks

a. Providing GUI for the Trend controllers and thereby an interface to the test

rig

b. Communicating with Trend controllers through proprietary protocol over

TCP/IP

c. Data logging the Trend controllers in an internally used database

d. Data logging each measurement point in a separate csv file. Files are saved

in “C:\Log data”. Files are only updated when CTS963 is running.

3. Agilent Data logger SW, which are handling the following tasks

a. Logging of the Agilent data logger through the USB interface

b. Providing online plots of the logged signals

c. Exporting logged data into a csv file where the name is based on the date

and time when the log was started. Locating of the data file is “C:\Log data

Agilent”. File name structure:

“opsysAgilent <mm>_<DD>_<YYYY> <HH>_<MM>_<SS> <#>.csv”

2.1.1. Data logging and data sources

Because the Simulation pc is running three different and separate tasks, it is also gener-

ating three different data sets from each test. None of the three data sets have the same

structure, and they, therefore, have to be processed in different ways.

The Python scripts utf16ToUtf8.py and csvTst.py can be used to process the data. The

script Utf16ToUtf8.py converts the data files from the CTS 963 software and the data file

from the Agilent logger from UTF16 to UTF8 encoding. The script csvTst.py provides dif-

ferent export and plotting features for the data. Both scripts provide the user with a com-

mand line interface, e.g. by typing the following in the anaconda prompt:”python

ut16ToUtf8.py <path to folder with data>”. In addition, both scripts have an optional help

option that can be accessed in the following way: “python csvTst.py –h”.

2.1.2. Data of interest

Because the test run creates three different data sets and therefore covers three different,

but overlapping, time periods, it has been decided that the simulation time defines the

data of interest. Hence, the time period covered in the data file from the python code i.e.

“simRlog<YYYYmmDD>_<HHMM>_ID<#>.csv” should represent a sub-set of the time pe-

riod covered in the data files written by the CTS 963 software and the Agilent data logger

Danish Technological Institute

6

software. This enables slicing of the time series in the CTS 963 data files and the Agilent

data file based on the start and end time in the data file from the simulation.

2.1.3. Python files

The python code is split up into five files:

1. pymodbus_server.py

a. Main file used when making tests on the test rig hardware. To start all the

python codes see Section 3.

b. Uses class/function descriptions located in the other python files.

c. The following configuration parameters can be changed in this file:

i. SERVER_IP = '172.17.32.91' #ip address of the host computer

ii. SERVER_MODBUS_PORT = 502

iii. FMU_DIR_RELPATH = ' '

iv. FMU_NAME = 'OpSys_0Experiments_Test_0setup_0mod-

els_BR1970_0house_0simulation_0with_0data.fmu'

v. SIM_START = 0.0

vi. SIM_END = 60*60*24*31 #continue sim for 31 days

vii. SIM_STEP = 15.0 #seconds between sim iterations

viii. CTRL_STEP = 600.0 #seconds between ctrl iterations

d. The file makes sure that a simulation_runner thread, which propagates the

house model every SIM_STEP seconds and records data in a csv file, is

started.

e. The file also makes sure that a ctrl_alg thread, which runs the control algo-

rithms that needs to be tested, is started.

2. datastore.py

a. Python modbus data context used to share data between the SIP, the sim-

ulation thread, and the control thread.

b. Read/write operations are blocking to make it interrupt/thread safe.

3. simulation_runner.py

a. Reads data from the shared data store context.

b. Generates input vectors for the simulation model and propagates it

SIM_STEP seconds.

c. Stores results in csv file and sends room temperatures and water return

temperatures to the Trend controllers through the SIP.

d. The following configuration parameters can be changed in this file:

i. self._model.set("filter_cutoff_hz",1) #Fast filter that makes sure that

input data is smooth and continuous for more robust simulation.

ii. self._model.set("T_forward_off",273.15) #convert T_forward to Kel-

vin

iii. self._model.set("start_time_sim",-24*60*60*30) #start sim 30.

January

e. The fmu file, e.g., named “OpSys_0Experiments_Test_0setup_0mod-

els_BR1970_0house_0simulation_0with_0data.fmu” contain the

model description for a 1970’s house which uses the weather and load data

profiles for a year located in “all_data_1970.txt” or

Danish Technological Institute

7

“all_data_noisy_1970.txt” (values are added +/- 10% normally distrib-

uted random noise).

f. Note that the fmu should be generated as an fmu 2.0 using co-simulation

with Dymola solvers in order to function properly (standard CVODE solver

sometimes crashes and should be avoided – Dymola Radau-II solver is bet-

ter).

4. fileTools.py

a. Contains a function that can generate a unique filename for the logged data.

5. ctrl_alg.py

a. Runs control algorithms, e.g., room temperature on/off valve control.

b. Modify the function “run_ctrl()“ inside the class CtrlAlg() with your own con-

trol code.

c. If a neural network is in use then the file “weather_jan_to_mar.mat”

contains predictions/forecasts of the weather in the first three months of the

year, and the file “NN_pars_nX_kY.mat” contains the pre-trained neural

network parameters (X represents the number of neurons and Y represents

the training run that provided the best performing network).

d. Currently, this file also contains help functions for running neural network

prediction and genetic algorithm optimization.

In order to be able to run the python code on another computer, the following installations

must be made:

1. Anaconda 4.3.0 or newer (python 2.7, 32 bit).

2. Pyfmi 2.3.1 (just run the MS windows installer for python 2.7 from https://pypi.py-

thon.org/pypi/PyFMI)

3. pymodbus version 1.3.0 from github is required (not pypi standard version).

4. If a neural network is in use then open an anaconda prompt and type “pip install

neurolab”.

2.2. The SIP

The task of the SIP is to create a Modbus interface between the Python code running in

the Simulation pc and the Trend controllers. The SIP acts as a ModbusTcp client, and it

ensures that data signals from the Trend controllers are written into the data store main-

tained by the Modbus server running in Python on the Simulation pc. In addition, the SIP

also ensures that data is transferred from the datastore of the Modbus server to the Trend

controllers. The mapping between the Modbus addresses and the Trend controller input

and output is configured using the web based configuration tool on the SIP.

 IP: http://172.17.32.93/

 User name: Admin

 Password:password

(The back up file “SIP_BackupSImPCAsServer” of the working configuration can be found

on the DTI server on: Y:\Projects\P2003908_Optimering af gulvvarme og vp sys-

temer\Fagligt\Sip\.)

http://172.17.32.93/

Danish Technological Institute

8

2.3. The Trend controllers

The task of the Trend controllers is to provide the low-level controls of all the electronic

valves on the test rig along with the logging of all the relevant measurements and set point

for the various control loops. In addition, the Trend controllers provides an interface to the

heat pump by presenting five inputs and five outputs that can be used for future improve-

ments of the test rig setup. One of the outputs from the Trend controllers is currently being

used to set the ambient temperature for the heat pump and thereby indirectly controlling

the forward temperature of the heat pump.

2.4. The Agilent logger

The task of the Agilent data logger is to log the sensors and signals connected to the Agilent

logger that are not logged through the CTS 963 or the Python code. Hence, the Agilent

logger is only used for logging signals and is, therefore, not necessary in connection with

the running of a test. In the current setup, it is, therefore, not possible to include sensors

or signals connected to the Agilent logger in the control setup of the test rig. Signals and

sensors that should be used for control by the Trend controllers or the high-level control

in the Python should be connected through the Trend controllers.

3. Test procedure

The section provides a description of a test procedure that ensures that data from all three

data sources can be used and will cover the time period of the data of interest as discussed

in section 2.1.1. A start up procedure and a post-test procedure will be described.

3.1. Start-up procedure

The following procedure must be followed to ensure that the data generated by the Trend

controller system during testing is stored correctly. The Trend controller stores 1000 sam-

ples from each sensor, and the CTS 963 will, therefore, have to collect data from each of

the controllers before they reach the limit of 1000 samples. The collection of sensor data

from the Trend controller is automated in the CTS 963 software. Before each test it is

recommended to do a clean-up of both the directory, where CTS 963 stores csv files and

the internal database of the CTS963.

3.1.1. Pre-test procedure

1. Ensure that the directory for the csv-files is empty. The directory is: 'C:\Log data'.

Files should be moved to another directory or deleted.

2. Start CTS 963

o Data will be logged and saved in both the database and the csv-files as soon

as CTS 963 is started.

3. Empty database using the “Tøm database” (Empty database) button in the CTS 963

interface, and deleted newly created files in the csv directory 'C:\Log data'.

4. Optional step: Change relevant settings in the CTS 963, e.g. toggle relevant

switches to ensure that input from SimPc is used as input to the Trend controllers.

Danish Technological Institute

9

5. Run system until system is ready for the actual test

o To ensure proper operation of the test rig, it is necessary to start the simu-

lation by running the python script “pymodbus_server.py. This ensures that

the test rig receives relevant feedback and can operate correctly.

6. Run test

o Stop the Python script pymodbus_server.py.

o Redo step 1 and 3.

o Start Agilent logger.

o Start the Python script pymodbus_server.py.

7. IMPORTANT DO NOT stop CTS 963 immediately after test. Wait at least 20

minutes to ensure that all relevant data is stored in both the database and the csv

files.

3.2. Post-test procedure

The following steps should be followed when a test run is over and data are to be recovered.

The order of the steps is important to ensure that data from all of the three data sources

can be used together.

1. Stop the Python script pymodbus_server.py.

2. Create a directory to store all data from the test.

3. Copy the simRlog[data_time_ID#] csv to the directory created in step 2.

4. Stop Agilent logger.

5. Copy Agilent data file to directory created in step 2.

6. Wait at least 20 minutes after the test has finalized before continuing with this

procedure.

a. Waiting 20 minutes ensures that all test data is collected from the Trend

controllers, stored in the SQL database, and written to the csv-files. Hence,

if this procedure is continued prematurely, test data might get corrupted.

7. Move all the csv-files from 'C:\Log data' to the directory created in step 2 for stor-

age.

a. Store files together with data files from the Python script pymod-

bus_server.py, i.e. the simRlog[data_time_ID#] csv and the data files cre-

ated by the Agilent data logger. This ensures that the data processing scripts

can be used to process the data.

8. Optional step: Empty the internal CTS 963 database.

9. Repeat test or close the system.

4. List of known issues

This section presents a list of known technical issues concerning the test rig and the com-

munication and control setup.

1. CTS 963 alarms.

a. The CTS 963 creates a large number of alarms during operation. Some of

these indicate that data is/might be missing. Some few short periods – less

than half an hour – are missing for some of the 963 values. The reason for

this has not yet be found, but is dealt with in a small Fortran program.

Danish Technological Institute

10

2. CTS 963 data files contain redundant data.

a. The data files are updated by appending the entire buffer for a given meas-

urement point from a Trend controller to the corresponding csv file. Hence,

there is a significant redundancy of data in the files. Cleaned files can be

created by using the following command: ”python csvTst.py export <path to

folder>

3. CTS 963 database limit.

a. The database used internally by the CTS 963 software has a limit of 10GB

and it is, therefore, recommended that the database should be emptied us-

ing the “Tøm database” (Empty database) button in the CTS 963 interface.

4. Data blow up when emptying the database.

a. When emptying the database file, *.mdf, the log file, *.ldf files blows up to

approximately 10-12 times the size of the database file. Hence, the *.mdf

files should not be allowed to grow above 8 % of the remaining capacity on

the hard drive.

5. Data processing scripts

This section provides a short manual for the data processing scripts. There are two main

scripts that should be used for processing the data, and they are called utf16ToUtf8.py and

csvTst.py. The use of the scripts will be described using a description of a suggested work-

flow.

The suggested workflow is as follows:

1. Convert to files from utf16 to uft8 encoding

a. python utf16ToUtf8.py <folder Path>

2. Inspect the data set by looking at which signals exists in the given data set.

a. python csvTst.py folder –p <folder Path>

3. Export the CTS 963 files

a. python csvTst.py export <folder Path>

4. Choose which signals to plot

a. Edit the list of signals to plot in csvTst.py. The list can be found in the be-

ginning of the function called “combfolder_main”

5. Plot the signals

a. python csvTst.py folder <folder Path>

b. Optional arguments to consider:

i. ”–v” for a more verbose output

ii. “-R” for real-time time stamps. Default is simulation time based time

stamps

iii. “-n” for no show of the plots. Pdf files of the plot are still saved.

Danish Technological Institute

11

5.1. Optional arguments

Both of the python scripts have optional arguments which always start with a dash”-“. The

most important optional arguments is the help argument, which is invoked in the following

way:

The “-h” or “—help” option provides the user with a help output that describes both the

usages of the script and the positional arguments as well as the optional arguments.

Danish Technological Institute

12

Appendix 1

Quick guide on how to operate the

OPSYS test rig

Danish Technological Institute

13

The following is a small guide describing how to stop a running test on the OPSYS test rig

and how to start a new test:

%%

In order to stop the test:

%%

1) stop any python scripts currently running (press Ctrl+c)

2) stop the agilent on the square black Start/Stop button

3) wait 20 minutes (so that we are sure that all CTS data has been logged)

4) cut the newest:

 - simRlog csv file from ..\python_scripts\testrig_with_opt_ctrl,

 - agilent csv file from C:\Log data Agilent,

 - and all csv files from C:\Log data.

Put the files into a folder on the external drive or on your own computer (to make sure we

don’t use all the hard disk space on the C drive).

5) Open the CTS963 program and navigate to the "Oversigt Anlæg" menu (vertical menu

on the left side of the screen).

 Press the "Tøm database" button.

 Open the folder path C:\Program Files (x86)\Trend Control Systems\963\database and

wait until the file i96X_log.ldf is about 1 mb large again (it will grow for a while and then

jump back to 1 mb after it has reached a size of about 11 times the size of

i96X_data.mdf).

 Note that there might be cases when the size of i96X_log.ldf reaches certain value and

in is not 1mb if so then press "Tøm database" button again.

%%

In order to start a test:

%%

1) First apply your changes to the python scripts.

2) Push the triangular green start button in the agilent program.

3) wait a couple of minutes to get all logs up an running.

4) From the windows menu start open the Anaconda Prompt.

5) Using 'cd path_of_the_file' command navigate to ..\OPSYS\py-

thon_scripts\testrig_with_opt_ctrl.

We do not give specific folder name because it might change together with the user, if in

doubt where the file is search it using windows.

6) run the python script pymodbus_server.py by typing "python pymodbus_server.py".

Plot of the test data in matlab:

1) Open a windows command prompt and navigate to OPSYS git respository ..\OPSYS\py-

thon_scripts\DataAnalysis.

2) Type "python utf16ToUtf8.py your_path_to_log_data".

3) Type "python csvTst.py export your_path_to_log_data".

4) Run the matlab script "plot_data" found in ..\OPSYS\matlab_scripts\data_analysis.

