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E.1 Introduction

As outlined in the project description, the efficiency of heat pumps depends
significantly on the its operating conditions. Typically, an increase of 1
degree C in the temperature difference leads to a decrease of 2-3 per cent in
terms of COP. A too high supply temperature also has consequences for the
floor heating system itself, as the volume flow through the system fluctuates
due to uncoordinated opening and closing of valves. The fluctuating flow
causes the heat pump to fluctuate in produced heat power, resulting in a
sub-optimal COP at the actual temperature level.

This document gives an overview of the control algorithms tested in simu-
lation within the project. The reader will first be introduced to the general
control architecture and the notion of a supervisory controller (Section E.3).
Then, the system dynamics is simulated in closed loop with a simple (but
standard) PI controller in a configuration where the flow is controlled via
on/off valves, and a proposal for improvements is given. Next, some simpli-
fied mathematical models (Section E.5) and a model based predictive control
algorithm using these simplified models are presented (Section E.6).

Finally, a different strategy based on Artificial Neural Network modeling
will be outlined (Section E.8 and onward). The results are detailed in the
attached paper, “Predictive Control of Hydronic Floor Heating Systems us-
ing Neural Networks and Genetic Algorithms” (Vinther et al., 2017), but
the methodology is included here as well for completeness.

E.2 PI comparison test evaluation

E.2.1 Heat Pump and Floor Heating Systems Description

The four-room house model described in Appendix C and its interaction
with the installed heat pump through the floor heating system as described
in Appendix D are considered.

The indoor air room temperature Ta is affected by the ambient conditions,
such as ambient air temperature Tamb, sunlight etc. Moreover, it is affected
by the heat generated by people living in the building and the devices they
use, such as stove, appliances etc. From a control perspective, all ambient
effects on the Ta are classified as a disturbances. In order to maintain Ta

within specified comfort limits, the heat pump has to maintain a satisfactory
temperature Tf of hot water, which is transported and used for in-house
purposes. The amount of water delivered to each room by the floor heating
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Figure E.1: Indoor Air Room Temperature Reference signal

system is regulated via the valve position da for that room. While flowing
through the under-floor pipes, the hot water delivers heat to the surrounding
floor and to the room, causing the hot water to be cooled instead to a lower
temperature than Tf . The temperature of the return water is denoted Tr;
the difference between Tf and Tr describes the amount of heat the heat
pump needs to deliver to the system. Unfortunately, there is no simple
way of controlling the heat pump; the only possibility is to overwrite its
temperature sensor readings in a way that will cause the heat pump to
change its operation.

E.2.2 Indoor Air Room Temperature References

To obtain a fair basis for comparison, a setup where the air temperature
in the house is governed by a simple PI controller is first simulated. One
weekend is simulated (48 hours) with the indoor air temperature references
Ta ref being equal for all four rooms. The references are shown in Figure E.1.
Night set back has been defined to start at 23:00 and last until 6:00, during
which Ta ref = 19◦C. During the daytime (after 6:00), Ta ref has been chosen
to 22◦C.

E.2.3 Dynamics evaluation

Figures E.2, E.3, E.4 and E.5 present the dynamics of indoor air temperature
of rooms 1, 2, 3 and 4, respectively. The rooms differ in size, and this is
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Ta1 [%] Ta2 [%] Ta3 [%] Ta4 [%]
34.0 51.0 74.0 97.0

Table E.1: Percentage of time the room temperature (6:00-16:00) is outside
the allowed hysteresis band around the set-point

clearly reflected in the dynamics of their air temperature; Room 3 has the
slowest dynamics, for example. After the change of set-point at 6:00, it
takes almost 10 hours for the temperature to reach the set-point. In order
to quantify the dynamics, a metric for calculating the percentage of time
the room temperature is within allowed band around the set-point is chosen.
Note that the PI controller hysteresis is ±0.5◦C. The dynamics is evaluated
for the temperatures in between 6:00 and 16:00, and the results are listed in
Table E.1.

As can be seen from the table, the air temperature of room 1 has been out
of the hysteresis bound 34% of the time, and this is the best result for all the
rooms. The PI controller managed to keep the room 1 temperature within
the set-point bound more often than other rooms, because the dynamics of
room 1 is the fastest, meaning it is easier to heat up and cool down the
room to designated temperatures. Room 2 and 3 shows worse results, 51%
and 74%, respectively, and it can likewise be concluded that their slower
dynamics are mainly responsible for that fact. In room 4, the set-point has
not been reached most of the time (97%), and two things can be concluded.
First, room 4 dynamics is slow. Second, either the forward temperature has
been too low and the room was not able to reach given set-point or the floor
heating gains have been chosen wrongly during the modeling part. Taking
into account that the forward temperature has been sufficient for the three
other rooms, modeling errors seems the most likely explanation.

Furthermore, one can observe that even though the PI controller should
keep the room air temperatures within the ±0.5◦C bound, the controller
very often closes/opens the valve too late, see Figure E.6. It happens very
often that the valve is closed when Ta1 violates the hysteresis bound by 0.1-
0.2 degrees. A delay of up to two iterations (2 minutes) has been noticed
between the control signal is sent and the valve responds; see also Appendix
F, Figure 2.22.

E.3 Supervisory Controller

Following the PI control test, a supervisory controller will be designed in
an attempt to improve the temperature control performance. A supervi-
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Figure E.2: PI Control Test Room 1 Indoor Air Temperature
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Figure E.3: PI Control Test Room 2 Indoor Air Temperature
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Figure E.4: PI Control Test Room 3 Indoor Air Temperature
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Figure E.5: PI Control Test Room 4 Indoor Air Temperature
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Figure E.6: PI controller hysteresis bound violation. Legend: black: Ta1,
blue: Ta1ref , red: d1.

sory controller is a type of a controller that does not send the control signal
directly to a given device or subsystem to be controlled; instead, it sends sig-
nals to the local controller of the device or subsystem. The local controllers
are responsible for managing the fast dynamics of the device/subsystem,
while the supervisory controller gathers the current states of the subsystems
and governs the behavior of all local controllers. In the present context, the
design starts out with the following three main assumptions:

• Hypothesis 1: Through supervisory control action it is possible to
bring down the power consumption of the heat pump.

• Hypothesis 2: Introducing a supervisory controller will lead to better
set point following.

• Hypothesis 3: Variable valve position control is beneficial in terms
of power consumption and set point following, for the operation of the
system.

Often, supervisory controller dynamics is dictated by physical constraints of
the system. In this case, the supervisory controller sends control signals ev-
ery 10 minutes, which corresponds to the opening/closing time of the valves
and minimum safe time between heat pump switches. In order to improve
upon the PI control mentioned in the previous chapter, the supervisory con-
troller will be model-based. Furthermore, it is chosen to make it predictive,
since it is known that predictive controllers are able to deal effectively with
constraints; they are able to estimate when a constraint violation is likely
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Figure E.7: Classification of the examined structure according to the inner
and supervisory control loops

to occur and thereby be able to avoid it in time. Another advantage of
predictive control is that future expectations, such as weather forecasts, oc-
cupancy schedule etc., can be incorporated into the control scheme, allowing
for even better performance. One of the few drawbacks of using model pre-
dictive control is computation requirements; a predictive controller normally
requires far more computation resources than e.g., a PI controller.

In the following, the supervisory controller will thus be referred as a Model
Predictive Controller (MPC). The general structure of the supervisory con-
troller is depicted in Figure E.7.

E.4 Methodology

In the new controller formulation, the previously set ±0.5◦C hysteresis is
replaced by an optimization algorithm; Figure E.8 illustrates how the opti-
mization algorithm has been fit into the simulation framework.

Before the first iteration a mathematical model of the optimized system
needs to be built (see Section E.5). When choosing the model a trade-off
between complexity and simplicity has to be made. Usually, more complex
models lead to higher accuracy, which is needed when making satisfactory
predictions of system behavior. On the other hand, simpler models offer
faster computation times and typically have fewer parameters to tune. Next,
the model needs to be tuned, i.e., parameters have to be chosen such that the
modeled dynamics mimics the true system behavior as much as possible. In
this report it is chosen to use a very simple model with heuristically chosen
parameter values, see Table E.2.

Once the model has been chosen, one has to find a suitable objective func-
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tion, which is a scalar function of system states, inputs and disturbances
(if measurable) that encapsulates the most desirable system behavior at an
optimum. The aim of the optimization is then to drive the system towards
the optimum. The objective functions investigated in this project are pre-
sented in Section E.6.2. The optimization is repeated during each iteration
of the control loop, repeatedly recomputing control signal trajectories in the
presence of new disturbances etc. The states, control variables and distur-
bances together with their initial values, and constraints are presented in
Table E.3, E.4 and E.5, respectively. In order to integrate the systems dy-
namics, a 4th-order Runge-Kutta integrator has been used in the numerical
studies.
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Symbol Description Value Units
Mz1 Room 1 thermal mass 650 kg
Mz2 Room 2 thermal mass 650 kg
Mz3 Room 3 thermal mass 2500 kg
Mz4 Room 4 thermal mass 2000 kg
UAhi Heat exchange coefficient 200 J/kgK

Table E.2: Model parameters; see Appendix C.

E.5 Mathematical Modelling

Each room’s indoor air temperature dynamics is expressed using the follow-
ing ordinary differential equation (ODE).

Mz cpair Ṫai = dai ṁai UAhi ((Tf + Tri)/2− Tai) +Qinti +Qshi

+ UAci(Tamb − Tai) (E.1)

where i ∈ {1, 2, 3, 4} represent the room number, Mz are thermal masses
of each room, cpair are specific heat capacities of each room, dai are valve
positions, ṁai are hot water flows for each room floor, UAhi are heat transfer
coefficients for each floor to the rooms, Qinti and Qshi are interior and exter-
nal heat sources in each room, UAci are heat transfer coefficients for heat
exchange with the ambient (walls, windows etc.), and Tamb is the ambient
temperature. As usual, Tai denotes the air temperature of room i, while Ṫ
denotes derivative of T with respect to time.

The thermal masses Mzi, together with the heat transfer coefficients used to
describe the heat exchanger of each zone have been chosen; model parameter
values can be found in Table E.2. The heat transfer coefficients in (E.1) are
assumed to be linearly dependent on the circulated water mass flow.

Note also that since the heat pump cannot be controlled directly – it is
equipped with its own built-in controller – the heat pump is manipulated
by adding an artificial offset signal Tamboffset to its temperature measure-
ment feedback, thereby ‘tricking’ it into following a behavior dictated by
the supervisory controller.

The following variables were chosen for the analysis.

• state variables: Air temperature, room 1 - 4, i.e., Ta1, Ta2, Ta3 and
Ta4 (see (E.1)). Initial values, constraints and units can be found in
Table E.3.

• control variables: Valve opening degree, room 1 - 4, i.e., d1, d2,
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Symbol Description Initial Minimum Maximum Units
Ta1 Room 1 air temperature 22 18 24 ◦ C
Ta2 Room 2 air temperature 22 18 24 ◦ C
Ta3 Room 3 air temperature 22 18 24 ◦ C
Ta4 Room 4 air temperature 22 18 24 ◦ C

Table E.3: System states: Initial values and constraints.

Symbol Description Initial Minimum Maximum Units
Tamboffset Temperature offset 0 −5 5 ◦C

d1 Room 1 valve 1 0 100 %

d2 Room 2 valve 1 0 100 %

d2 Room 3 valve 1 0 100 %

d2 Room 4 valve 1 0 100 %

Table E.4: Control signals: initial values and constraints.

d3 and d4, as well as heat pump temperature sensor offset Tamboffset.
Their initial values, constraints and units can be found in Table E.4.

• disturbances: Ambient air temperature Tamb; insolation in room 1 -
4, i.e., Qsh1, Qsh2, Qsh3 and Qsh4; and internal heat sources in room 1
- 4, i.e., Qind1, Qind2, Qind3 and Qind4.

Note that the presented minimum and maximum values for the disturbances
are not used in the optimization procedure as actual constraints. They are

Symbol Description Initial Minimum Maximum Units
Tamb Ambient air temperature 10 10 26 ◦C
Qsh1 Room 1 solar heat 22 22 22 J
Qsh2 Room 2 solar heat 22 22 22 J
Qsh3 Room 3 solar heat 22 22 22 J
Qsh4 Room 4 solar heat 22 22 22 J
Qind1 Room 1 internal heat 29.17 0.05 32.04 J
Qind2 Room 2 internal heat 29.17 0.05 32.04 J
Qind3 Room 3 internal heat 29.17 0.05 32.04 J
Qind4 Room 4 internal heat 29.17 0.05 32.04 J

Table E.5: Disturbances: initial values and constraints.
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presented in order to give the reader an impression of the variations in
ambient conditions.

E.6 Optimization

This section briefly presents the optimization problem to be solved at each
iteration. Let x ∈ Rn and u ∈ Rm be time-dependent states and input
signals, respectively. Given a system described by a set of coupled first-order
ordinary differential equations ẋ = F (x, u), a set of constraints on inputs
and states h(x(t), u(t)) ≥ 0 and some appropriate cost function L(x, u), the
Optimal Control Problem (OCP), defined for a given initial state x̄0 at time
t0, is to find the control policy u⋆(τ) over the time horizon τ = [t0, tp] that
achieves the minimal integrated cost over τ .

The optimization problem can be formulated conveniently as follows:

minimize
x(·), u(·)

tp∫
t0

L(x(t), u(t))dt (E.2a)

subject to ẋ(t)− F (x(t), u(t)) = 0, t ∈ [t0, tp], (E.2b)
x(0)− x̄0 = 0, (E.2c)

h(x(t), u(t)) ≥ 0 t ∈ [t0, tp], (E.2d)

where (E.2b)–(E.2d) are constraints. The first constraint states that the
system states must follow the dynamics F given the candidate input u; this
is essentially what makes the optimization above a predictive controller.
The second constraint states that the optimization must start at the current
value of the states each time it is executed; this introduces feedback into the
optimization. The third constraint is a general statement of constraints,
such as upper and lower limits on forward temperature, rate of change of
valve positions etc.

E.6.1 Multiple Shooting

Multiple Shooting (MS) is a method for solving nonlinear MPC problems
such as (E.2a) numerically. The basic idea is as follows. For each iteration,
a prediction horizon is defined, setting the current time to 0 and the end
time to the current time plus tp. Assuming a sequence of control samples
covering the prediction horizon is given, MS then divides the integration of
the system dynamics into short time intervals [τi, τi+1] where

0 = τ0 ≤ τ1 ≤ ... ≤ τN = tp.
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Throughout each of the short intervals, the control signal is assumed to be
kept constant; see Figure E.9.
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Figure E.9: General idea of Multiple Shooting discretization. Note that this
is a generic example; see e.g., Kirches et al. (2012).

In the example shown, tp = 60[s] and the prediction horizon is divided into
N = 6 intervals. The ODE state trajectories are first divided into N in-
tervals. Next, additional optimization variables sxi are introduced, which
represent the initial state value at the start of each interval. The corre-
sponding final value is represented by the variable xi evaluated at (τi+1).
Looking at Fig. E.9, it is easy to see that the state trajectory at the end of
each of the intervals needs to connect with the initial value of the following
one. This can be done by introducing so-called ”continuity constraints”:

xi(τi) = sxi . (E.3)

The objective function is similarly divided into N intervals and evaluated
on each one of them:

Li(si, ui) =

τi+1∫
τi

L (xi(τi), ui) dt, (E.4a)

subject to initial value constraints (E.4b), continuity constraints (E.4c) and
path constraints (E.4d) evaluated only at the introduced nodes,

sx0 = x̄0 (E.4b)
sxi = xi(τi) (E.4c)
h(sxi , ui) ≥ 0., (E.4d)

13



where x̄0 contains the current state value (i.e., at the beginning of the pre-
diction horizon).

Thus, the MPC problem (E.4a)–(E.4d) can be written in the following com-
pact form:

min
w

Φ(w) (E.5)

subject to

g(w) =


sx0 − x̄0

sx1 − f(sx0 , u0)
...

sxN − f(sxN−1, uN−1)

 = 0 (E.6)

h(w) =


h(sx0 , u0)

...
h(sxN−1, uN−1)

h(sxN )

 ≤ 0 (E.7)

where Φ(w) =
∑N

i=0 Li(s
x
i , ui) is the objective function and w contains the

discrete state and control variables:

w = {x0, u0, ..., xN−1, uN−1, xN}.

For further details and notes on application, see for instance (Kirches et al.,
2012).

E.6.2 Objective function

In order to validate the hypotheses from Section E.3, the objective function
(E.2a) with integrand

L =
4∑

i=1

ri(Tairef − Tai)
2 + rfT

2
forward (E.8)

has been used. Here, i represents the room number and ri, rf are scalar
weights. The first term in the objective function is responsible for driving
the room temperature toward the set-point, while the last term penalizes
high forward temperature values.

E.7 Simulation Results

The PI controller has been compared with the model predictive controller
(MPC) with different lengths of prediction horizons. All simulations have
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been done for a 48-hour period. The purpose of the simulations is not
to present optimal performance of the MPC as such, but rather to show
the differences between the MPC and PI controller and try to verify the
hypotheses in Section E.3.

E.7.1 Room Temperature Dynamics Evaluation

Figures E.10, E.11, E.12 and E.13 present simulations of the indoor air
temperature for each room governed by the PI controller, plotted against
its reference (set-point of the room air temperature), and the corresponding
room temperature achieved by the MPC controller. The MPC is assumed to
have access to future temperature references and all disturbances through-
out the prediction horizon, in this case one sample (10 minutes). By simple
observation of the plots it can be noticed that the MPC yields better set-
point following. Table E.6 summarizes the performance of each controller;
the first row shows the PI controller performance and the second row shows
the corresponding MPC results. The first four columns present the conver-
gence metric for the whole 48h test period. The last three columns shows
the total power consumption of heat pump, the mean forward temperature,
and the mean coefficient of performance value, which has been calculated
by Equation (E.9):

COP =
Qhp

Php
(E.9)

Qhp = ṁtot ccpw (Tf − Trt) (E.10)

where ṁtot describes the total mass flow in the floor heating system and Php

represents the measured power consumption of the heat pump.

As can be seen from Table E.6, the model predictive controller outperforms
the PI/hysteresis controller in all columns. The air temperatures in room
1, 2, 3 and 4 are within the allowed hysteresis bound for 15.2, 17.4, 10.8
and 7 percentage points more of the relevant time intervals, respectively.
The power consumption is lowered by 2 kW by the MPC, and the mean
heat pump forward temperature Tf is 0.9 degree lower while at the same
time improving the comfort through more accurate temperature set-point
following.

E.7.2 Valve Dynamics Evaluation

In order to lower the power consumption and Tf while maintaining the cor-
rect delivered heat, it is required to increase the mass flow. The following
analysis will give an attempt to understand the influence of the valves as
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Figure E.10: MPC and PI Test Comparison: Room 1 Indoor Air
Temperature.
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Figure E.11: MPC and PI Test Comparison: Room 2 Indoor Air
Temperature.
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Figure E.12: MPC and PI Test Comparison: Room 3 Indoor Air
Temperature.
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Figure E.13: MPC and PI Test Comparison: Room 4 Indoor Air
Temperature.
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Test Ta1[%] Ta2[%] Ta3[%] Ta4[%] Php [kWh] Tf [◦C] COP []
PI 37.2 57.6 34.7 47.9 23.1 35.5 3.855

MPC 52.4 75.0 45.5 54.9 21.1 34.6 3.935

Table E.6: Performance evaluation. The heat pump power consumption is
lowered by 8.1%.

dt1[h] dt2[h] dt3[h] dt4[h] dm1[%] dm2[%] dm3[%] dm4[%]

10.8 18.5 18.7 19.3 22.6 38.5 38.9 40.3
7.8 15.3 20.7 18.0 16.3 31.8 43.2 37.4

Table E.7: Performance evaluation for PI (1st row) and MPC (2nd row)

input, in particular whether continuous control over the valves position con-
tributes to achieving higher COP. In this simulation, the valve positions di
and the forward temperature Tf are thus chosen as control variables. In
order to evaluate the valve dynamics the following four metrics have been
chosen:

• Total Opening Time [h] : Table E.7, columns: dt1, dt2, dt3, dt4

• Mean Valve Opening Degree [%] : Table E.7, columns: dm1, dm2,
dm3, dm4

• Mean Mass Flow [kgs ] : Table E.8, columns: m1, m2, m3, m4

• Total Number of Valve Position Changes[-] : Table E.8, columns:
dj1, dj2, dj3, dj4

Evaluations of the four metrics are listed in Table E.7 and E.8.

Looking at Table E.7, it is seen that the total valve opening time for room
1, 2 and 4 is decreased by the MPC compared to the PI controller by 3,
3.2 and 1.3 hours, respectively. Furthermore, the mean opening degrees
were decreased by 6.3, 6.7 and 2.9 percentage points for room 1,2 and 4,

m1 [kg/s] m2 [kg/s] m3 [kg/s] m4 [kg/s] dj1[] dj2[] dj3[] dj4[]

0.0388 0.046 0.0123 0.0186 17.0 21.0 7.0 15.0
0.0288 0.0403 0.0141 0.018 79.0 112.0 39.0 64.0

Table E.8: Performance evaluation for PI (1st row) and MPC (2nd row)
(cont.)
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respectively. According to Table E.8, the mean mass flows were lowered by
0.01, 0.0057, and 0.0006 kg/s for room 1, 2 and 4, respectively. On the other
hand the number of position changes increased significantly, by 62, 91 and
49 times for room 1, 2 and 4, respectively. As for room 3, its total opening
time got increased by 2 hours, but mean valve opening degree, mean mass
flow and number of position changes increased, by 4.3 percentage points,
0.0018 kg/s and 32 times, respectively.

Concluding, it can be said that MPC tends to open/close valves much more
often and keep the valves open for shorter period of time than in the case
of a baseline controller. It is also worth noting that the total mass flow was
in fact slightly lower than for the PI controller.

E.7.3 Forward Temperature

One of the primary goals of this project is obtaining a higher COP for the
heat pump through optimization of its operating conditions. As can be
seen from Equation (E.9), in order to achieve this, one should control the
forward temperature and valves such that either the power consumption
is decreased while the total heat input is maintained at the same level, or
increase the heat input while keeping the power consumption constant, or
some combination of the two.

Figure E.14 presents a comparison of the forward temperature Tf com-
manded by the PI and MPC controllers. In addition to the sample-by-
sample values of Tf (PI: thin black line, MPC: thin blue line), the figure
shows hourly mean values of Tf (PI: thick black line, MPC: thick blue line).
Red dots indicate where the MPC demanded higher Tf values.
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Figure E.14: MPC and PI Test Comparison: Heat pump Forward Temper-
ature. Thin lines show sample-by-sample (ten-minute) values, while thick
lines show hourly averages.

20



Overall, the MPC succeeded in lowering the mean Tf by 0.9 degree. Through-
out the 48h simulation, the MPC kept Tf lower for about 75 % of time.

E.7.4 Power consumption and COP evaluation

This section investigates the differences in power consumption and COP
between the PI and MPC controllers. For this purpose, traces of the dif-
ferences in power consumption demanded during the simulations have been
plotted together with the difference of sum of all room valve opening degrees
in Figure E.15.

The figure should be read in the following way. The black line indicates
the power differences, meaning that if it takes positive values, then the PI
controller resulted in larger power consumption than the MPC, and if the
power difference is negative the MPC resulted in larger power consumption.
The red dots indicate the difference of the sum of all valve opening degrees.
It turns out that there is a significant correlation between the two data sets
presented, with linear correlation coefficient r=0.47 and p-value equal to 0.
In conclusion it can be said that the ability to control the valves gives the
MPC controller a large advantage in terms of power consumption savings.
Furthermore, looking at the power difference trace, one can notice that the
MPC has shifted the power consumption to different time periods.

E.7.5 Prediction Horizon Length

So far it has been shown that it is possible to achieve lover power consump-
tion and higher COP by introducing a predictive controller, even if it has
only a short prediction horizon. This section focuses on the MPC itself and
contains simulation results for controllers with various prediction horizons
(1, 2, 3, 4, 5 steps, where each step corresponds to 10 min). Table E.9 is
an extension of Table E.6 and presents convergence metric values for the
four rooms, the heat pump power consumption, the mean forward temper-
ature and the mean COP for the PI controller as well as for the MPC with
the listed horizon lengths. The table also lists the relative improvements in
heat pump power consumption for each MPC simulation relative to the PI
controller.
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Figure E.15: MPC and Baseline Test Comparison: Power and valve differ-
ences. Left scale: Power (W), Right scale: Sum of opening degree, where 1
corresponds to 100%.
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Ta1[%] Ta2[%] Ta3[%] Ta4[%] Php [kWh] ∆Php [%] Tf [◦C] COP
PI 37.2 57.6 34.7 47.9 23.1 - 35.5 3.855
1 52.4 75.0 45.5 54.9 21.1 8.66 34.6 3.935
2 51.7 77.1 46.2 55.9 20.8 9.96 34.7 3.939
3 50.7 77.4 46.5 56.6 20.4 11.7 34.1 3.804
4 50.7 76.4 47.2 55.9 20.2 12.6 35.1 3.942
5 51.0 76.0 46.5 55.9 20.1 13.0 35.2 3.942

Table E.9: Performance evaluation for control with different horizon lengths.
Higher convergence metric scores indicate that the temperature stays within
the comfort band for a greater ratio of the simulation.

Clearly, increasing the prediction length results in decreased power consump-
tion and increased COP, but the improvements quickly become small as the
horizon is increased. The simulation with the 5-step-ahead MPC resulted
in slightly higher forward temperature than the one-step ahead MPC. Small
differences in the convergence metric can be noticed, but the comfort is not
compromised noticeably, which is crucial.

Further MPC controller comparisons have been made for the MPC with one
and five steps ahead prediction horizons. For the sake of consistency with
the previous comparisons, a valve dynamics evaluation will be done next;
see Tables E.10 and E.11.

The tables indicate that the previously observed trend continues; by increas-
ing the prediction horizon, the total opening time, mean opening degree and
mean mass flow have all been decreased even further for room 1, 2 and 4,
whereas they were increased for room 3.

dt1 dt2 dt3 dt4 dm1 dm2 dm3 dm4

7.817 15.283 20.733 17.967 16.3 31.8 43.2 37.4
6.35 14.85 21.317 17.867 13.2 30.9 44.4 37.2

Table E.10: Performance evaluation for 1-step MPC (top row) and 5-step
MPC (bottom row)
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m1 m2 m3 m4 dj1 dj2 dj3 dj4
0.0288 0.0403 0.0141 0.018 79 112 39 64
0.0231 0.0399 0.0145 0.0179 72 113 38 63

Table E.11: Performance evaluation for 1-step MPC (top row) and 5-step
MPC (bottom row)

The number of valve position changes was decreased by the 5-step ahead
MPC by nearly 10% in case of room 1, while maintaining approximately the
same activity for the other rooms.

E.7.6 Partial conclusion

In conclusion it can be stated that introduction of predictive control gives
rise to significant performance increases in terms of heat pump power con-
sumption – up to about 13% – which can undoubtedly be improved further
than illustrated above by better tuning of the model and control optimiza-
tion. The observed increases in COP factor were more modest than ex-
pected, however.

It is also noted that the decrease in electricity consumption in the heat pump
was actually followed by a slight increase in comfort (in terms of better set-
point following), which must be due to better flow control into the underfloor
heating sections in each room.

It was furthermore noted that increasing the prediction horizon in the MPC
yielded modest, but consistent performance improvements.

However, the aforementioned improvements come at the expense of having
to have a model of the house and heating system. In the following, it will be
investigated if the rather knowledge-expensive model can be avoided while
still achieving some of the advantages of the predictive control scheme.
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E.8 Neural network-based predictive control

In addition to the model-predictive controller detailed above, a data-driven
approach has been investigated as well. The idea is that by employing
a ‘learning’ controller that does not rely on a pre-tuned and potentially
complicated model of the house, floor heating system and heat pump, the
control concept can more easily be rolled out to new houses. In principle,
a ‘learning’ controller does not require any a-priori knowledge of layout or
materials of the building (flooring, walls, windows etc.), the type of heat
pump, and so forth.

In this project, it has been chosen to investigate a solution based on Artificial
Neural Networks (ANN). The work was published at the European Control
Conference 2015 in Linz, Austria, in the attached paper (Vinther et al.,
2017). Only an overview of the methodology and the main results is given
here; the reader is referred to the attached paper for details.

E.9 System configuration

The overall setup is shown in Figure E.16. During operation, in- and output
data is collected from the system (‘House’ in the figure) and used to train
a prediction model (‘NN’ in the figure). Using the trained ANN model to
predict the system dynamics in response to hypothetical inputs, it is then
possible to perform nonlinear model predictive control in a similar fashion
as in the previous supervisory control approach.

As in the previous case, the most important values to include in the model
are the room indoor air temperatures (Tai). Unlike the previous case, it
is now assumed that the forward temperature can be controlled (within
pre-set limits), whereas valve settings are dictated by setting room temper-
ature references. Various combinations of these and other measurements
(disturbances) were considered as inputs to the ANN model to investigate
its prediction capabilities under various conditions; an example is shown in
Figure E.17. See Table 1 in (Vinther et al., 2017) for the complete list.

E.9.1 Artificial neural network model

A general fully connected Multi-Layer Perceptron ANN structure is illus-
trated in Fig. E.18. Inputs to the network are composed of augmented
state measurements x ∈ Rn (actual states, i.e., current and previous tem-
perature data) and disturbances (solar irradiation and other incident heat)
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Figure E.16: Learning control setup. Left: training configuration; u is
provided externally, for instance by a controller or as a pseudo-random sig-
nal, and a training algorithm adjusts the ANN model weights to minimize
the network’s prediction error. Right: control configuration; the trained
ANN model provides predictions of future outputs for a predictive controller,
which in turn generates control signals. ∆ is a delay operator.

along with controllable inputs u ∈ Rm. The outputs from the network are
calculated via the formula

ŷ[k + 1] = W2 tanh(W1

[
x[k]
u[k]

]
+ b1) + b2 (E.11)

where the hyperbolic tangent function is a common choice of neuron func-
tion, often referred to as the ‘tangent-sigmoid’ in neural network literature.
Any differentiable function could in principle be used, however. k is sample
number (assuming a fixed sampling period of one hour). W1,W2, b1 and b2
are weight and bias-matrices containing the parameters of the model. These
nm+n+pn+p parameters need to be trained, to give a mapping from u and
x to y that approximates the measured data well. Simply put, the training
process consists of adjusting the weights and biases to minimize the sum of
squared prediction errors

J(W1,W2, b1, b2) =
N∑
k=1

(y[k]− ŷ[k + 1])T (y[k]− ŷ[k + 1]) (E.12)

The celebrated Levenberg-Marquardt algorithm (Hagan and Mehnaj , 1994)
with bayesian regularization, which minimizes a combination of squared er-
rors and weights in order to produce an ANN that generalizes well, was
chosen for training of the ANN (Matlab function trainbr). An example of
prediction performance of trained ANN models is shown in Figure E.19.
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Figure E.17: Example of inputs used for training.

Figure E.18: Multi-layer perceptron architecture.
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Figure E.19: Example of prediction performance. ‘NN3’ and ‘NN7’ refer to
representative ANN models with different amounts of information available;
see Section E.9.2 for further explanation.

E.9.2 ANN-based predictive control

Once the prediction model is trained to yield satisfactory performance, it can
be used in the intended role for predictive control. The basic idea is largely
the same as in the previous setup, namely to lower the forward temperature
while keeping the correct room temperatures. The minimization problem is
in this case defined as

minimize
u(·)

Nh∑
i=0

Tf [k + i] + r(yref [k + i]− y[k + i])T (yref [k + i]− y[k + i])

(E.13a)
subject to ŷ[k + i] = N (u[k]), (E.13b)

umin ≤ u[k]) ≤ umax, (E.13c)
ymin ≤ y[k] ≤ ymax (E.13d)

where the vector inequalities should be interpreted element-wise and N (·)
is shorthand for the ANN model (E.11).

Due to the presence of the nonlinear ANN model in (E.13b), the problem
is likely to be non-convex and not suitable for standard solvers. It was
therefore investigated, if the optimization problem could be solved with
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less conventional methods; in this case, Genetic Algorithms, e.g. (Renders
et.al., 1992). Genetic Algorithms basically employ a number of randomly
selected candidate control trajectories, whose performance can be evaluated
using (E.13a). The best-performing candidates are kept and combined (so-
called crossover), while poorly performing candidates are eliminated from
the population. The candidate pool is then re-populated with new, randomly
chosen candidates, and the selection process can be repeated.

Figure E.20 shows simulations of four different control strategies: just keep-
ing the forward and room air temperature set-points constant, using heating
curves to calculate the forward temperature, and optimization based on two
different neural network models, one with an unrealistic amount of input
information available (NN7) and one with a more realistic amount of infor-
mation available (NN3). The heating curve sets the forward temperature
based on the outdoor ambient temperature and is adjusted to provide 35◦C
when the ambient temperature is 0◦C to provide sufficient heating of all
the rooms. The ANN-based concepts are allowed to adjust the forward
temperature.

The main simulation results are summarized in Table E.12, which lists mean
values of forward temperature and deviations from the setpoints in each
room along with the mean thermal heat input to the underfloor heating
system.

From the table, it is seen that all the strategies use the same average amount
of floor heating Qf during the test period to keep the room temperatures
close to 22◦C. The deviations from the setpoint for each room are very
similar; slightly worse for the ANN approaches, but nothing that would be
felt by a person in the room. On the other hand, most of the large peaks
in the temperature in room 1 have been reduced a bit by turning off the
heating preemptively, causing the room to be pre-cooled. This is possible
due to the ability of the NN to predict ahead (see the zoomed plot in Figure
E.20). Furthermore, the forward temperature was lowest with the ANN
strategies – between 0.7 and 1.5◦C – which can result in operation at better
COP values, as explained previously.

E.9.3 Partial conclusion

The investigation show a decrease in the forward temperature of between
0.7 and 1.5◦C, depending on the applied ANN controller. This reduction of
the forward temperature was achieved without jeopardizing the comfort in
the house. As a result, it was found that the ANN-based predictive control
strategy was feasible, at least in simulation. The Genetic Algorithm-based
optimization was able to provide sub-optimal, but satisfactory, solutions
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Figure E.20: Example of control performance.
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Variable Constant Heat curve NN3 NN7
Mean Tf [◦C] 35 34.5 33.9 33.1

RMSE Ta1 [◦C] 0.71 0.72 0.72 0.63
RMSE Ta2 [◦C] 0.19 0.20 0.26 0.27
RMSE Ta3 [◦C] 0.16 0.15 0.27 0.17
RMSE Ta4 [◦C] 0.12 0.13 0.25 0.23
Mean Qf [W] 1875 1876 1876 1875

Table E.12: Performance evaluation, ANN control. RMSE values basically
means standard deviations of deviations from the setpoint in the correspond-
ing rooms (22◦C).

to the control problem once the ANN was trained well within the time
allocated between samples. The method requires less modeling effort than
the previous control scheme, but may also be less reliable if the training
data is insufficiently rich.

The time unfortunately did not allow for development of an ANN controller
optimizing both the performance of the heat pump and the heating system,
however, it is anticipated that similar good results as obtained for the MPC
controller may be obtained.

E.10 Conclusions

This Appendix has shown that model based predictive control yields de-
creased heat pump total power consumption and increased mean coefficient
of performance, at least in simulation. This has been achieved by decreasing
the mean heat pump forward temperature as well as the mean mass flows for
room 1, 2 and 4, while increasing the mass flow for room 3. The predictive
control makes more active use of the valves and is able to shift heat input
to advantageous periods of the day.

More specifically, the investigation showed that significant savings are achiev-
able when controlling the heat pump and the heat emitting system together.
Savings in the electricity demand of the heat pump of up to 13% were found
for the investigated period. These savings were obtained even when the
overall COP system was as high as 3.9 with the traditional PI controller.

The hypotheses of savings up to 25% for a heat pump installation with
traditional control and a mean seasonal COP of around 3 thus do not seem
unrealistic.
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The downside is the need for a model, which needs to be tuned to the in-
dividual house, heat pump and system, which can be very expensive if it
has to be done by hand for each house installation. Using artificial neural
networks may offset some of these costs, but it has not yet been investi-
gated how good data availability for training may be guaranteed in a given
situation.

Simulation-based investigations with a developed Artificial Neural Network
(ANN) controller showed a reduction of the forward temperature for the
investigated period of up to 1.5◦C for the same heat pump installation as
investigated with the MPC, again without compromising comfort.

Both model/supervisory control configurations require more computational
resources than traditional PI controllers, but certainly not prohibitively so.
All the control simulations documented above were carried out on a com-
pletely standard PC using Matlab, Modelica and off-the-shelf Python li-
braries. It is estimated that the supervisory controller, in either nonlinear
MPC or ANN configuration, can easily be implemented and executed on
a Raspberry Pi with 0.5 GB RAM or similar industry-standard hardware.
Furthermore, the supervisory control configuration makes it reasonably easy
to interface with the heat pump and underfloor heating subsystems.

The above results are very encouraging and leads to the conclusion that
MPCs and ANNs are promising candidates for optimized control of heat
pump installations where the performance of both the heat pump and the
heat emitting system are optimized jointly. So the problems with poorly
performing heat pump installations documented in (Poulsen et al, 2017)
may, therefore, likely be solved by switching from traditional PI control to
advanced combined control.

The performance of the advanced controllers were unfortunately not tested
in the OPSYS test rig, nor were their annual performance determined. The
development of the two OPSYS tools took more time than anticipated, leav-
ing less time to develop and test new control strategies.

An application for a follow-up to the OPSYS project has, therefore, been
submitted with the aim of developing both software and hardware of a con-
troller capable of optimizing the performance of heat pump installations.
The software will be based on the above described findings.

It is clear that further improvements can be made and that the optimization
algorithm should be developed in the following directions:

• Model identification: Good model parameter identification is necessary
in order to achieve accurate predictions.
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• Model structure improvements: Extending the nonlinear model used in
the MPC, for instance adding 4 more differential equations describing
the return temperature of each room might give further improvements.
It is also very likely that including return temperature measurements
will give additional performance improvements.

• Different choice of objective function: Introducing the coefficient of
performance directly in the objective function might be an interesting
choice for evaluation.

• Tuning the objective function: Finding the correct tuning parame-
ters in the objective functions are obviously the key to good overall
performance; finding a consistent way that does not require extensive
simulation would be very valuable.

• Integration with local/in-house energy sources: Should additional sources
of cheap/renewable energy be available, e.g., in the form of photo-
voltaics or a household wind turbine, system-wide price-based opti-
mization could be considered as well.
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