

Energy dataWhat for?

PhD student Riccardo Bergamini

DTU Mechanical Engineering

Department of Mechanical Engineering

1.1 What to use data for?

1.2 PINCH ANALYSIS

1.3 PINCH ANALYSIS - Grand Composite Curve

1.4 Case study

1.5 Application of Pinch analysis – Energy targeting

1.6 Application of Pinch Analysis – Retrofit results

1.6 Application of Pinch Analysis – Retrofit results

1.6 Application of Pinch Analysis – Retrofit results

PBT = 4.1 years

2.2 Data acquisition – measurements involved

Data complexity:

- 33 mass flow rates
- 104 temperatures
- 62 total solids contents

2.2 Data acquisition – measurements involved

Data complexity:

- 33 mass flow rates
- 104 temperatures
- 62 total solids contents

205 measurements

Step 1: Rough data acquisition

Step 2: Uncertainty analysis

Step 3: Sensitvity analysis

Step 4: Allowed uncertainty maximization

Step 5: Detailed data acquisition

Step 1: Rough data acquisition

Step 2: Uncertainty analysis

Step 3: Sensitvity analysis

Step 4: Allowed uncertainty maximization

Step 5: Detailed data acquisition

Step 1: Rough data acquisition

No ad-hoc measurements

Step 2: Uncertainty analysis

Acceptable uncertainty

Step 3: Sensitvity analysis

Step 4: Allowed uncertainty maximization

Step 5: Detailed data acquisition

Step 1: Rough data acquisition

Step 2: Uncertainty analysis

Step 3: Sensitvity analysis

Step 4: Allowed uncertainty maximization

Step 5: Detailed data acquisition

No ad-hoc measurements

Acceptable uncertainty

Important parameters

Step 1: Rough data acquisition

Step 2: Uncertainty analysis

Step 3: Sensitvity analysis

Step 4: Allowed uncertainty maximization

Step 5: Detailed data acquisition

No ad-hoc measurements

Acceptable uncertainty

Important parameters

Required precision

Step 1: Rough data acquisition

205 process values taken from:

- Existing measurement system
- Expert review
- Annual production and consumption records

Step 2: Uncertainty analysis

High uncertainty assigned to the rough data

Acceptable

uncertainty

Step 3: Sensitvity analysis

Of the 205 required values...

...only 44 need precision in their definition!

Energy dataWhat for?

PhD student Riccardo Bergamini

QUESTIONS?

DTU Mechanical EngineeringDepartment of Mechanical Engineering