

FLOW BATTERIER PÅ VEJ IND I KOMMERCIEL DANSK SERIEPRODUKTION

Background

 Associate Professor – Department of Engineering -Research in batteries and solar energy conversion

 Co-founder of VisBlue – commercialisation of flow batteries

Søren Bødker Co-Founder & CEO, Sales and daily operation

Adelio Mendes Co-Founder & Technical advisor Full professor, University of Porto

Anders Bentien Co-Founder & Technical advisor Associate Professor, University of Aarhus,

Morten Madsen Co-Founder & Controller BSc.EE

AARHUS UNIVERSITET Levelized Cost of Electricity (LCOE) - Renewables

- LCOE of renewables are now comparable to fossil based electricity
- Still decreasing
- Only one major challenge

AARHUS UNIVERSITET Battery applications in the utility grid

Storage costs

- Significant cost reductions with maturity
- Can batteries reach 100 EUR kWh⁻¹?

ANALYSIS PUBLISHED: 10 JULY 2017 | VOLUME: 2 | ARTICLE NUMBER: 17110

The future cost of electrical energy storage based on experience rates

O. Schmidt^{1,2*}, A. Hawkes³, A. Gambhir¹ and I. Staffell²

nature

energy

Stationary vs Mobile applications

	Stationary -Renewables	Mobile -Consumer electronics -Automotive
Energy density (kWh/kg)	Less important	High importance
Charge/discharge speed	Less important	High importance
Cost	High importance	Less important

Main points

- Battery research has been driven by mobile applications
- In future renewable applications cost is the most important parameter

New battery chemistry and design is needed

VANADIUM REDOX FLOW BATTERIES

- Electricity stored in dissolved vanadium – state-of-art
- Pumped into a stack (electrochemical flow cell)
- Independent scaling of power & capacity
- Fully charged V⁵⁺ and V²⁺

Stack of cells (1.25 V/cell) -> 48 V

Flow battery during discharging

Outline

- Opportunities
- Cost Challenges
- Technical Challenges
- Battery systems
- Summary

Opportunities of VRFBs

- Very robust
 - Can be turned of and left for months without power
 - BMS is simple (keep cell voltage < 1.6 V/cell)
 - Single cell monitoring is not necessary on single cell level
- Long life time (> 10-15) years
 - In principle no chemical degradation Same solution on both sides
- Easy recycling of vanadium Remove tanks
- Aqueous based High fire safety
- Temperature stable Vanadium electrolyte can be operated up to 35°C
- Low cost potential Vanadium electrolyte is 200 EUR kWh⁻¹

Stack Cost

State-of-art

- Max Power density ~ 200 mW cm⁻²
- Cost 1000 EUR kW⁻¹ raw materials costs is only a fraction

Cost reduction potential

- More efficient design
- Mass production

Realistic short term goal \sim 500 EUR kW⁻¹

Vanadium Cost

Price history of V_2O_5

- Ready to use vanadium electrolyte ~ 150-200 EUR kWh⁻¹ (bulk quantity)
- Cost partially determined by V₂O₅
- Large amounts of V₂O₅ Likely to fall (100-150 EUR kWh⁻¹)
- Unlikely with < 100 EUR kWh⁻¹

BoP/Assembly - Cost

BoP – Balance-of-Plant

- Pumps
- Control
- Monitoring
- Power electronics

Assembly

• Currently assembled by hand

Mass production

BATTERY RESEARCH AT AU-ENG

- Irreversible crossover through membrane during cycling
- Mix of osmosis/electroosmosis
- Capacity falls rapidly
- Approx. 0.3 L h⁻¹ (in 5 kW stack)
- In a real system 10 % will be lost in 2 weeks

Challenges - Crossover

Challenges - Crossover

Solution

- Shunt tube between tanks -> Small loss in coulomb efficiency
- Over 7 days: No capacity loss and volume difference

Challenges – Energy efficiency

3.3 | min-1

y = 0,0749x + 53,526

50 % State-of-charge

Amp

100.0 120.0

• Voltage almost independent of flow rate by middle SOC $\underbrace{10 \, I \, \text{min-1}}_{y=0,0743x+54,346} \underbrace{56.0}_{y=0,0743x+54,346} \underbrace{y=0,0743x+54,346}_{48.0} \underbrace{y=$

-120.0 -100.0 -80.0

-60.0

-40.0

Non-linear (mass transport effects) Volt 10 % State-of-charge 10% SOC by low (and high) SOC 64.0 60.0 Lower voltage efficiency 10 | min-1 56.0 y = 0.0789x + 52.174Intelligent pump control (current, 52.0 SOC, temperature) 3.3 | min-1 ŚΛ y = 0,0928x + 49,752 44.0 Significant increase of system Amp efficiency (and capacity) 40.0 -120.0 -100.0 -80.0 0.0 -60.0 -40.0 -20.0 20.0 40.0 60.0 80.0 100.0 120.0

50% SOC

64.0

40.0

0.0

20.0

40.0

60.0

80.0

-20.0

Volt

5 KW/50KWH VISBLUE VRFB @ LIVØ

Full view

Side - Power electronics

Front-VRFB

Voltage/Current over four days (June 6-10, 2018)

VISBLUE VRFB STATUS

- Q3 2018: 0-series ready (3rd generation prototype)
- Q1 2019 : ~ Cumulative of 2000 kWh have been installed at different locations
- Q1 2019 : Upscaling of production

SUMMARY

- Worlds largest battery currently being built is a VRFB (800 MWh)
- VRFBs have potential for long lifetime and low cost
- Mid term: production cost 250-300 EUR kWh⁻¹ is realistic

ACKNOWLEDGEMENTS

PARTNERS

FUNDING

