

Center for Energieffektivisering og Ventilation

Brugervejledning til Værktøj til systemoptimering

- PSO-projekt 348-011

Maj 2019

Forord

Denne brugervejledning benyttes ved anvendelse af edb-værktøjet til systemoptimering, som er udviklet i forbindelse med forskningsprojektet bevilget under PSO 2016 administreret af Dansk Energi: 348-011 – Værktøj til systemoptimering.

Udviklingen af værktøjet er sket i tæt samarbejde med tre leverandører af elmotorer og frekvensomformere, et elforsyningsselskab samt to industrivirksomheder repræsenteret ved:

AURA Rådgivning A/S – Michael Olsen og Ole Ernst Wandall-Frostholm ABB A/S – Bjarne Tvede Danfoss Power Electronics A/S - Norbert Hanigovszki Nidec Industrial Automation Denmark A/S – John Mønsted Pressalit A/S - Preben Jensen LEGO System A/S - Torben Andersen

Claus M. Hvenegaard Teknologisk Institut Maj 2019

Indholdsfortegnelse

For	ord		
1	Vær	ktøj til	systemoptimering 4
	1.1	Opbyg	ning af brugervejledningen 4
2	Forn	nål med	d Værktøj til systemoptimering 5
3	Inst	allation	af programmet 6
	Prog	gramme	et hentes på websiden www.motorsystems.org6
	3.1	Hardw	are og software krav 6
	3.2	Install	ation af programmet
4	Intro	oduktio	n til brug11
	4.1	Samle	t system11
		4.1.1	Belastning13
		4.1.2	Transmission14
		4.1.3	Motor
		4.1.4	Asynkronmotor17
		4.1.5	Styring (Motor forbindelse)18
		4.1.6	PM-motor19
		4.1.7	Synkron reluktansmotor20
		4.1.8	Arbejdspunkt20
		4.1.9	Output
		4.1.10	Ventilation
		4.1.11	Vandpumpe26
		4.1.12	Hydraulikpumpe27
		4.1.13	Trykluft
		4.1.14	Kølekompressor
		4.1.15	Anden motordrift31
5	Ekse	empler	på brug af værktøjet - ventilationssystem38
	5.1	Data f	or ventilationssystemet
		5.1.1	Ventilator
		5.1.2	Remtransmission
		5.1.3	Motor
		5.1.4	Styring
	5.2	Måling	er og registreringer på ventilationssystemet
	5.3	Inddat	ering i programmet
	5.4	Output	t fra programmet42

	5.5	Udskif	tning af komponenter i ventilationssystemet43
6	Ekse	empler	på brug af værktøjet - trykluftsystem51
	6.1	Data f	or trykluftsystemet51
		6.1.1	Kompressor51
		6.1.2	Motor
		6.1.3	Styring51
	6.2	Måling	er og registreringer på trykluftsystemet52
	6.3	Inddat	tering i programmet53
	6.4	Outpu	t fra programmet55
7	Ekse	empler	på brug af værktøjet - kølesystem
	7.1	Data f	or kølesystemet
		7.1.1	Kølekompressor58
		7.1.2	Motor
		7.1.3	Styring59
	7.2	Måling	er og registreringer på kølesystemet59
	7.3	Inddat	tering i programmet63
	7.4	Outpu	t fra programmet63
8	Ekse	empler	på brug af værktøjet - hydrauliksystem65
	8.1	Data f	or hydrauliksystemet65
		8.1.1	Hydraulikpumpe65
		8.1.2	Motor
		8.1.3	Styring65
	8.2	Måling	er og registreringer på hydrauliksystemet66
	8.3	Inddat	tering i programmet68
	8.4	Outpu	t fra programmet68
9	Eco	design i	regulativerne for ventilatorer og vandpumper71
	9.1	Ecode	sign for ventilatorer71
	9.2	Ecode	sign for vandpumper73
10	Bere	egning	af besparelsespotentiale75
11	Uds	krifts fu	Inktionaliteter

1 Værktøj til systemoptimering

Dette beregningsværktøj er tænkt for alle, der arbejder med at energieffektivisere maskinsystemer:

- Maskinbyggeren
- Leverandøren af komponenterne til maskinsystemet
- Elselskabernes energirådgivere
- Rådgivende ingeniører
- Den energiansvarlige/indkøberen i virksomheder

Et energieffektivt system, hvor enkeltkomponenterne hver især er energieffektive, og hvor de er tilpasset hinanden i forhold til behovet, betyder besparelser på virksomhedens elregning og er med til at nedbringe CO₂-udslippet til gavn for miljøet. Meget ofte vil det optimale system også reducere omkostningerne til drift og vedligehold.

Dette program er udviklet af Teknologisk Institut for midler fra Dansk Energis forsknings- og udviklingsprogram ELFORSK.

1.1 Opbygning af brugervejledningen

Brugervejledningen er opbygget i 4 sektioner:

- Kapitel 2, formål med værktøjet
- Kapitel 3, installation og programopbygning
- Kapitel 4, introduktion til brug
- Kapitel 5, eksempler på brug

Kapitel 2 beskriver formålet med værktøjet til systemoptimering.

Kapitel 3 beskriver hvorledes programmet installeres, herunder hvilke krav der stilles til hardware. Kapitlet beskriver endvidere hvorledes programmet er opbygget.

Kapitel 4 beskriver brugen af programmet. Hér ses hvilke værdier der skal tastes ind og hvorfor (hvad de skal bruges til) og hvad der evt. kan udelades.

Forklaringer til de enkelte skærmbilleder, underskærmbilleder, bokse, muligheder, begrænsninger m.m. beskrives nærmere.

Kapitel 5 - 8 viser detaljerede eksempler på anvendelse af programmet.

2 Formål med Værktøj til systemoptimering

Formålet med værktøjet til systemoptimering er, at gøre det muligt for maskinbyggere, leverandører af komponenter til maskinsystemer, energirådgivere, rådgivende ingeniører og energiansvarlige indkøbere i virksomheder, at designe energieffektive systemer, hvor enkeltkomponenterne hver især er energieffektive, og hvor de er tilpasset hinanden i forhold til behovet. Dette betyder besparelser på virksomhedens elregning og er med til at nedbringe CO₂ udslippet til gavn for miljøet. Meget ofte vil det optimale system reducere omkostningerne til drift og vedligehold.

3 Installation af programmet

Programmet hentes på websiden <u>www.motorsystems.org</u>.

Figur 3.1. Motor Systems Tool

3.1 Hardware og software krav

- Hardware krav: Standard pc med 1 GB ram.
- Softwarekrav: Styresystem Windows 7 eller nyere.

3.2 Installation af programmet

Der klikkes på installationsfilen "MST-installer.exe", hvorefter billedet i Figur 3.2 kommer frem. Herefter klikkes på krappen "Kør".

denne s	en kunne oftware?	ikke bekræftes.	Er du sikker p	å, at du vil køre
	Navn:	MST-installer.exe		
	Udgiver:	Ukendt Udgive	r	
	Туре:	Program		
	Fra:	C:\Documents and	l Settings\cmh\Ski	rivebord
Searce .	altid for de	ana fil åbnas	Kør	Annuller
✓] Spørg	allio, rør dei	nne ni abnes		
~	Denne fil ha	ır ikke en avldia diail	tal signatur, der be	ekræfter dens

Figur 3.2. Installationsfil – MST-installer.exe

Når der klikkes på "Kør" kommer billedet i Figur 3.3 frem. Herefter vælges hvor det selv- ud pakkende installationsfil skal placeres. Der afsluttes ved at klikke på "Unzip".

otor Systems Tool		×
To unzip all files to the specified folder, press the Unzip button.		Unzip
Unzip to dir:		Close
C:\MST-Install	Browse	

Figur 3.3. Udpakning af filer til ønsket bibliotek

Når der klikkes på "Unzip" kommer billedet i Figur 3.4 frem. Der angives kodeordet "msttool" og klikkes "Ok".

unzip	Enter Password	nzip.
izip to	This self-extracting EXE is encrypted. Enter a password to unzip:	OK lose
\MST	******	Cancel

Figur 3.4. Angivelse af password

Når der klikkes på "Ok" kommer billedet i Figur 3.5 frem. Herefter vælges hvor selve systemoptimeringsværktøjet "MotorSystemsTool" og hvor software fra National Instruments skal placeres. Når dette er valgt klikkes der på "Next".

Destination Directory Select the primary installa	ation directory.
All software will be installed different location(s), click th	in the following location(s). To install software into a le Browse button and select another directory.
Directory for Motor System	ns Tool
Directory for Motor System C:\MotorSystemsTool\	ns Tool Browse
Directory for Motor System C:\MotorSystemsTool\ Directory for National Instr	ns Tool Browse ruments products
Directory for Motor System C:\MotorSystemsTool\ Directory for National Instr C:\Programmer\National I	ns Tool Browse ruments products Instruments\ Browse
Directory for Motor System C:\MotorSystemsTool\ Directory for National Instr C:\Programmer\National	ns Tool Browse ruments products Instruments\ Browse

Figur 3.5. Installation af software i to biblioteker

Når der klikkes på "Next" kommer billedet i Figur 3.6 frem. Herefter vælges "I accept the License Agreement" og der klikkes herefter på "Next".

License Agreement You must accept the license(s) displ	layed below to proceed.	-
	ITS SOFTWARE LICENSE AGREEMENT	~
INSTALLATION NOTICE: THIS IS A CONTI AND/OR COMPLETE THE INSTALLATION DOWNLOADING THE SOFTWARE AND/O COMPLETE THE INSTALLATION PROCES AGREEMENT AND YOU AGREE TO BE BO BECOME A PARTY TO THIS AGREEMENT CONDITIONS, CLICK THE APPROPRIATE DO NOT INSTALL OR USE THE SOFTWA (30) DAYS OF RECEIPT OF THE SOFTWA ALONG WITH THEIR CONTAINERS) TO T SHALL BE SUBJECT TO NI'S THEN CURI	RACT. BEFORE YOU DOWNLOAD THE SOFTWARE PROCESS, CAREFULLY READ THIS AGREEMENT. BY R CLICKING THE APPLICABLE BUTTON TO SS, YOU CONSENT TO THE TERMS OF THIS DUND BY THIS AGREEMENT. IF YOU DO NOT WISH TO AND BE BOUND BY ALL OF ITS TERMS AND E BUTTON TO CANCEL THE INSTALLATION PROCESS, RE, AND RETURN THE SOFTWARE WITHIN THIRTY RE (WITH ALL ACCOMPANYING WRITTEN MATERIALS THE PLACE YOU OBTAINED THEM. ALL RETURNS RENT RETURN POLICY.	
		~
	 I accept the License Agreement. 	
	I do not accept the License Agreement.	
		-

Figur 3.6. Accept af licensaftale

Når der klikkes på "Next" kommer billedet i Figur 3.7 frem. Her ses hvilken software der installeres på pc'en. I dette tilfælde er det kun systemoptimeringsværktøjet og de tilhørende filer der installeres. Software fra National Instruments er i dette tilfælde allerede installeret på pc'en. Der klikkes herefter på "Next".

Adding or Changing			
 Motor Systems Tool Files 			

Figur 3.7. Start på installationen

Når der klikkes på "Next" installeres systemoptimeringsværktøjet. Når dette er sket afsluttes der ved at klikke på "Finish".

🖏 Motor Systems Tool		
Installation Complete		
		_
The installer has finished updating your system.		
	KK Back	Next >> Finish

Figur 3.8. Installering af værktøjet udført

4 Introduktion til brug

Nedenfor ses en beskrivelse af brugen af programmet. Hér ses hvilke værdier der skal tastes ind og hvorfor (hvad de skal bruges til) samt hvad der evt. kan udelades.

Forklaringer til de enkelte skærmbilleder, underskærmbilleder, bokse, muligheder, begrænsninger m.m. beskrives nærmere.

4.1 Samlet system

Når programmet startes, kommer skærmbilledet vist i Figur 4.1 frem.

2	8
Expiry date: 01-01-2019 Værktøj for Systemoptimering	3
Version: 2.17.11	
Dette beregningsværktøj er tænkt er for alle, der arbejder med at energieffektivisere maskinsystemer:	
> Maskinbyggeren	
> Leverandøren af komponenterne til maskinsystemet	
> Elselskabernes rådgivere	
> Radgivende ingeniører	
> Den energiansvanige/nidkøberen i virksomheder	
Et energieffektivt system, hvor enkeltkomponenteme hver især er energieffektive, og hvor de er tilpasset hinanden i forhold til behovet betyder besparelser på virksomhedens elregning og er med til at nedbringe CO2 udslippet til gavn for miljøet. Meget ofte vil det optimale system reducere omkostningerne til drift og vedligehold.	
Værktøjet er baseret på standardiserede modeller for motorer, frekvensomformere, gear, remme osv. der alle regner virkningsgraden ud som funktion af hastighed og belastning.	
Dette program er udviklet af midler fra Energiselskabernes F&U-program ELFORSK	
Vælg sprog TEKNOLOGISK INSTITUT OK OK	

Figur 4.1. Startbillede

		2
		Version: 2.17.11
Transmission:	P2	P1
Vælg venligst dine s I vilkårlig ræ	ystemkomponenter ekkefølge pere gemt system	Stop program
	F3 Image: Constraint of the second secon	Fa Fa Pa Pa Value Pa

Når der klikkes på "Ok" kommer skærmbilledet i Figur 4.2 frem.

Figur 4.2. Systemoverblik

I skærmbilledet skal der klikkes på de fire komponenter der indgår i et motordrevent maskinsystem. Det drejer sig om belastningen eller applikationen, transmissionen, motoren og styringsenheden (her kaldet "Motor & Drive").

Ved at klikke på belastningen/applikationen fremkommer skærmbilledet vist i Figur 4.3.

4.1.1 Belastning

I skærmbilledet skal der tages stilling til hvilken type belastning/applikation der er installeret i maskinsystemet.

Der er, som det ses i Figur 4.3, mulighed for at vælge mellem fire typer belastninger/applikationer, som hver har deres særegne belastningsprofil, dvs. sammenhæng mellem moment og omdrejningstal.

Angivelsen af belastningsprofilet bliver anvendt til beregning af det nødvendigt tilførte moment, når der foretages ændringer af belastningens omdrejningstal (se senere).

Figur 4.3. Belastning/applikation

Når typen af belastning er valgt, skal der vælges en transmission mellem belastningen og motoren. I Figur 4.3 ses det skærmbillede der fremkommer når man klikker på "Transmission".

4.1.2 Transmission

Som det ses, kan der vælges mellem remtransmission, geartransmission eller ingen transmission.

Remtransmission

Hvis der vælges remtransmission, skal der, som det ses i Figur 4.3, foretages en række valg.

Først skal der foretages et valg af remtypen. Der er mulighed for at vælge mellem kilerem (smal dækket, smal fortandet, klassisk dækket og klassisk fortandet), Poly V rem, fladrem og tandrem.

I sammenhæng med valget af remtypen vælges også remmens navn, eksempelvis XPB som vist i Figur 4.3. XPB betyder at det er en fortandet smalkilerem med B profil.

Der foretages et valg af udvekslingsforholdet. Der kan vælges mellem fem forskellige udvekslingsforhold, som også er dem der typisk angives i remproducenternes kataloger (1,0 - 1,05 - 1,2 - 1,5 - 3,0).

Der foretages et valg af hvor den mindste (hurtigste) remskive er placeret. Der kan vælges mellem belastningen eller motoren. Denne angivelse benyttes til at beregne henholdsvis motorens og belastningens omdrejningstal.

Figur 4.4. Remtransmission

Den mindste remskives diameter skal indtastes. Denne information bruges sammen med udvekslingsforholdet og den forventede remhastighed til at bestemme den valgte remtypes nominelle effekt.

Når man har angivet antallet af remme, foretages en beregning af nominelle effekt på hele remtransmissionen.

Alle indtastningerne afsluttes med at klikke på "Ok".

Som det ses i Figur 4.3 er der mulighed for at få informationer om fordele og ulemper ved anvendelse af remme samt gode råd om remme. I Figur 4.3 og Figur 4.3 ses de skærmbilleder der fremkommer, når man klikker på knapperne "Remme: fordele og ulemper" og "Gode råd om remme".

Remtype	Fordele	Ulemper	1
Klassisk kilerem dækket	 Billig i indkøb Let tilgængelig Modstandsdygtig 	 Stort bøjningstab ved små skivediametre Ikke egnet til store udvekslingsforhold (max. 7:1) 	
Profiler: Z, A, B, C, D, E			
Smalkilerem dækket	 Billig i indkøb Let tilgængelig Modstandsdygtig Høj effekt pr. breddeenhed 	 Stort bøjningstab ved små skivediametre (større end for den klassiske kilerem) Ikke egnet til store udvekslingsforhold (max. 7:1) 	
Profiler: SPZ, SPA, SPB, SPC			L
Klassisk kilerem fortandet	 Billig i indkøb Høj fleksibilitet Lang levetid Modstandsdygtig 	 Relativt stort bøjningstab ved små skivediametre Ikke egnet til store udvekslingsforhold (max. 8:1). 	
Profiler: ZX, AX, BX, CX			L
Smalkilerem fortandet	 Billig i indkøb Hoj fleksibilitet Lang levetid Modstandsdygtig Høj effekt pr. breddeenhed 	 Stort bøjningstab ved små skivediametre (gælder ved store profilhøjder) Ikke egnet til store udvekslingsforhold (max. 8:1) 	
Fladrem	 Egnet til små skivedjametre og 	 Stor akselbelastning nga hård 	ł
	 bagsidetræk Egnet til store udvekslingsforhold (max. 20:1) Egnet til transmissioner med høje hastigheder Høj virkningsgrad 	 opspænding Ikke så tilgængelig Dyr i indkøb 	
	 Egnet til transmissioner med høje hastigheder Høj virkningsgrad 	• Dyr indkøb	

Figur 4.5. Remme – fordele og ulemper

V	algkrite dustrie	erier Ile r	i ro em	ela tra	tio	n t mi	il ssia	one	r		
					Marrie .	Marrie .		-	m	m	m
No	Valgkriterie	Mål	KKD	SKD	ККХ	SKX	FR	PVR	HTDR	PGGT	PCGT
I.	Effekt P kW pr. breddeenhed	Maksimere	4	3	4	3	4	3	3	2	1
2.	Hastighed m/sec.	Maksimere	3	2	2	2	1	2	1	1	. I
3.	Max udvekslingsforhold	Anbefalet	7:1	7:1	8:1	8:1	20:1	15:1	15:1	15:1	15:1
4.	Fysisk plads	Minimere	3	3	2	2	3	2	2	1	1
5.	Akselbelastning	Minimere	2	2	2	2	4	3	1	1	I
6.	Fast centerafstand (stramrulle)		3	4	3	4	1	1	3	3	4
7.	Skridegenskaber (koblingseffekt)	Maksimere	2	2	4	4	2	4	5	5	5
8.	Positionsring-Synkron	Maksimere	5	5	5	5	5	5	Synkron	Synkron	Synkron
	Pulserende eller stødende last	Minimere	2	2	3	2	2	3	4	4	4
9.			r	c.	5	5	2	1	5	5	5
9.	Multitræk	> 2 remskiver)	,							

Figur 4.6. Gode råd om remme

Geartransmission

Hvis der vælges en geartransmission, skal der, som det ses i Figur 4.3, foretages en række valg.

Først skal der foretages et valg af geartypen. Der er mulighed for at vælge mellem snekkegear, keglehjulsgear og tandhjulsgear.

2		X
Valg af transmission:		
Rem transmission Gear transmission	Ingen transmission	
Vælg gear type: Tandhjulsgear 💎		Nominel eta gear:
Nominelt aksel moment [Nm]: hastighed [rpm]:	Udveksling:	Driftsfaktor fb:
Dimensionerende akseleffekt [kW]:	Nominel gear Input effekt [kW]	Beregnet motor hastighed [rpm]: 1408
	Ok	

Figur 4.7. Geartransmission

Når geartypen er valgt, skal der vælges en virkningsgrad for gearet. Som udgangspunkt vælger programmet en typisk virkningsgrad for den valgte geartype. Den af programmet valgte virkningsgrad kan overskrives med en værdi fundet i eksempelvis et gearkatalog. I gearleverandørernes kataloger angives altid gearets virkningsgrader i forhold til motorens mærkeeffekt. Derfor vil katalogvirkningsgraderne være lavere end målte virkningsgrader for specielt snekkegear. Gearets angivne virkningsgrad i Figur 4.7 vil af den grund afvige fra den virkningsgrad der beregnes i output fra programmet ("System overblik).

Der foretages et valg af nominelt akselmoment, dvs. det moment gearet skal afgive til applikationen. Der vælges endvidere en hastighed på gearets udgangsaksel. Der vælges et udvekslingsforhold samt en f-faktor, som bestemmer gearets dimensionerende akseleffekt. På baggrund af gearets dimensionerende akseleffekt og gearets virkningsgrad beregnes gearets nominelle input effekt, som er den effekt gearet skal tilføres fra motoren. Motorens hastighed beregnes på baggrund af den nominelle akselhastighed og udvekslingsforholdet.

Når transmissionen er valgt, klikkes der på "Ok" og der vælges herefter en motor.

4.1.3 Motor

Når der klikkes på "Motor & drive" i "Systemoverblik" (Figur 4.2) fremkommer skærmbilledet vist i Figur 4.8. Der kan vælges mellem en asynkronmotor og drev eller en PM-motor, som altid er inkl. drev.

I værktøjet er det også muligt at få beregnet virkningsgrader for 2- og 4-polede IE2 motorer i området 0,12 kW til 1.000 kW i henhold til IEC-standard nr. 61800-9-2, Annex D og A. Dette er udarbejdet som en service for dem der deltager i arbejdet med den pågældende standard. En bruger af værktøjet skal ikke benytte disse beregningsmuligheder.

4.1.4 Asynkronmotor

Først klikkes på knappen "Hent std. standard motor".

Herefter kan der vælges en motor. Motorens størrelse (nominelle akseleffekt) skal først vælges. Der kan vælges motorer fra 0,12 kW til motorer større en 1.000 kW.

Herefter vælges der mellem motorklasserne IE1, IE2, IE3 og IE4, hvor IE4 er de mest effektive (Premium efficiency/sparemotorer).

Endelig vælges antallet af poler. Her kan vælges mellem 2-polet (3.000 rpm), 4-polet (1.500 rpm) og 6-polet (750 rpm).

Der afsluttes med at klikke på knappen "Motordata OK".

Motor & Driv	e selection		Σ			83	Motor & Driv	e selection		
Std. Motor	PM - Motor	SynRM - Motor	IEC 61800-9-2				Std. Motor	PM - Motor	SynRM - Motor	IEC 61800-9-2
Inp	out motor data:			Standa	rd motor	IEC	Ing	out motor data:		
	Nominel Ak	seleffekt: 0	kW		Motor størrelse [kW]: 18,5	16C 60034-38-1		Nominel Ak	seleffekt: 18,5	kW
	Nominel S	pænding: 0	Volt		IE Klasse:			Nominel S	pænding: 400	Volt
	Nomir	nel Strøm: 0,0	Ampere		IE2 motor 🗸 🗸			Nomir	nel Strøm: 34,9	Ampere
	Nomine	l Cos phi: 0	(-		Antal poler:			Nomine	l Cos phi: 0,84	-
	Nominel I	Frekvens: 0	Hz		4 pole 🤝			Nominel I	Frekvens: 50	Hz
	Nominel H	astighed: 1415	rpm		Nominel Akseleffekt [kW]:			Nominel H	lastighed: 1450	rpm
	Beregnet	Eta [9/]			18,5			Beregnet	Eta [9/]	
	0,0	NaN	OK?		Nominal Eta [%]:			121,8	91,2	Ok?
					91,2					
t	Hent std. mot	K			Ok		T t	Hent std. mot Motordata O	K N	
		/								

Figur 4.8 – Indtast data for motor Figur 4.9 – Tabelopslag

for motor

Der er også mulighed for selv at indlæse data for en motor. I felterne under "Input motor" indlæses data for motoren. Der skal som det ses i Figur 4.8 indtastes nominelle data for akseleffekt, spænding, strøm, cos phi, frekvens og hastighed.

Når motoren er valgt, skal der vælges en styring. I Figur 4.3 ses det skærmbillede der fremkommer når man har klikket på knappen "Motordata OK".

4.1.5 Styring (Motor forbindelse)

Som udgangspunkt (default) forudsættes det, at der ikke er nogen frekvensomformer, dvs. motoren startes direkte (Direct On Line – D.O.L).

Hvis der er installeret en softstarter i det motordrevne maskinsystem, klikkes der på knappen "Softstarter". Herefter benytter programmet en softstarter med automatisk bypass. Hvis der er installeret en frekvensomformer i det motordrevne maskinsystem, klikkes der på knappen "Frekvensomformer".

Når dette er valgt, klikkes der på knappen "OK".

Figur 4.11 – Ingen styring (D.O.L)

Motor forbindelse luur" PWM Ok

Figur 4.12 – Softstarter med automatisk bypass

Figur 4.13 - Frekvensomformer

Nu er alle data vedr. det motordrevne maskinsystem valgt. Der skal nu vælges et arbejdspunkt, der skal beregnes ud fra (se afsnit 4.1.5 "Arbejdspunkt").

4.1.6 **PM-motor**

Hvis der vælges en PM-motor, skal der, som det ses i Figur 4.14, vælges en nominel akseleffekt og et nominelt omdrejningstal.

På baggrund af disse valg beregnes den optagne effekt P1, den nominelle virkningsgrad og det beregnede nominelle moment.

 Motor & Drive selection
 23

 Std. Motor
 PM - Motor
 SynRM - Motor
 IEC 61800-9-2

 Omdreipningstal
 Akseleffekt
 Nominel [kW]:
 :

 1500
 0
 :
 :
 :

 Beregnet optagen
 Effekt - P1 [kW]:
 :
 :
 :

 H122
 87,3
 Ok

Når dette er valgt, klikkes der på knappen "OK".

Figur 4.14. Indtast data for PM-motor

Nu er alle data vedr. det motordrevne maskinsystem valgt. Der skal nu vælges et arbejdspunkt, der skal beregnes ud fra (se afsnit 4.1.5 "Arbejdspunkt").

4.1.7 Synkron reluktansmotor

Hvis der vælges en synkron reluktansmotor skal der, som det ses i Figur 4.15, vælges en nominel akseleffekt og et nominelt omdrejningstal.

På baggrund af disse valg beregnes den optagne effekt P1, den nominelle virkningsgrad og det beregnede nominelle moment.

Når dette er valgt klikkes der på knappen "OK".

Figur 4.15. Indtast data for PM-motor

Nu er alle data vedr. det motordrevne maskinsystem valgt. Der skal nu vælges et arbejdspunkt, der skal beregnes ud fra (se afsnit 4.1.5 "Arbejdspunkt").

4.1.8 Arbejdspunkt

I skærmbilledet "Indtast kendt arbejdspunkt" skal man vælge hvilken en af komponenterne i det motordrevne maskinsystem og på hvilken side (af komponenten) effektmæssigt man ønsker at foretage beregninger for. Mellem komponenterne kan der foretages en markering.

Herefter skal man indtaste det aktuelle arbejdspunkt i kW. Hvis belastningen P₄ ("Load") er valgt, skal der typisk indtastes en hydraulisk effekt, det vil sige den effekt belastningen skal kunne yde. For en ventilator er det produktet af volumenstrømmen og den totale trykstigning over ventilatoren.

Derudover skal der indtastes omdrejningstallet for belastningen, f.eks. ventilatorens omdrejningstal.

Når dette er valgt, klikkes der på knappen "OK".

Indtast kendt a	arbejdspunkt:				2
P4 •	Last P ₃	Transmission	P ₂	Motor & Omformer	P1 0
Indtast arbejdspunkt:	Hastighed P3: 1740 Arbejdspunkt Effekt [kW]: 3,80 Arbejdspunkt Hastighed [rpr 3,1740	Hastighed P2:	48,30 Seregnet moment [Nm]	Calc. master: P4 - Belastning ud	Ok

Figur 4.16. Indtastning af kendt arbejdspunkt

4.1.9 **Output**

I Figur 4.17 ses output fra programmet.

I figuren (til venstre) ses den hydrauliske effekt P₄ på de 8,8 kW og belastningens omdrejningstal på 1.740 rpm. Som udgangspunkt angives belastningens virkningsgrad til 65 % ("Eta – Belastn."). Hvis belastningens virkningsgrad kendes, klikkes på knappen "Belastning valg". Herefter skiftes til "Manual Eta". Det betyder, at der nu kan indtastes en virkningsgrad for belastningen. I Figur 4.18 ses billedet for output men med en virkningsgrad på 84 % for belastningen.

Figur 4.17 – Output fra programmet

I Figur 4.18 ses betydningen af at ændre belastningens virkningsgrad:

- + P₃ Last indgangseffekt, som er den tilførte effekt til belastningen, er nu faldet fra 13,54 kW til 10,48 kW
- P_2 Motor akseleffekt, som er motorens afgivne (aksel) effekt, er nu faldet fra 15,49 kW til 12,0 kW
- P₁ Tilført effekt, som er motorens (og evt. frekvensomformerens) optagne effekt, er nu faldet fra 17,78 kW til 13,85 kW

Figur 4.18 - Output fra programmet efter ændring af belastningens virkningsgrad

Som det ses i Figur 4.18 er det også muligt at klikke på knappen "Indtast kendt arb. Punkt". Klikkes der på denne knap kommer der inputfelter til beregning af den hydrauliske ydelse P₄ frem. Som det ses, er der også inputfelter til angivelse af applikationens virkningsgrad og hastighed.

4.1.10 Ventilation

I Figur 4.19 ses inputfelter for en ventilator, men der kan også vælges en vandpumpe, en hydraulikpumpe, en trykluftkompressor, en kølekompressor og en applikation som hører under anden motordrift. Der skal nu indtastes en volumenstrøm, en total trykstigning, en virkningsgrad og evt. en hastighed.

Ventilator Vandpumpe Hydraulikpumpe Trykluft Kølekompressor Anden motordrift
$P_{hyd} = Q \left[\frac{m^3}{s} \right] \cdot \Delta p \left[Pa \right]$
Tryk [Pa]
P4 - Belastning Udgangseffekt [kW]: Virkningsgrad [%]: P3 - Hast [rpm]: Indgangseffekt [kW]: OFF 0,00 100,00 1740 0,00 OFF
Calc master = P4, Angiv Eta & hastighed

Figur 4.19. Indtast kendt arbejdspunkt for en ventilator

2
Ventilator Vandpumpe Hydraulikpumpe Trykluft Kølekompressor Anden motordrift
$P_{hyd} = Q \begin{bmatrix} \frac{m^3}{s} \end{bmatrix} \cdot \Delta p [Pa]$
Tryk [Pa]
P4 - Belastning Ny beregnet P4 - Belastning Brug last profil Udgangseffekt [kW]: Virkningsgrad [%]: P3 - Hast [rpm]: Indgangseffekt [kW]: OFF 8,81 84,00 1740 10,48 OK
Calc master = P4, Angiv Eta & hastighed

I Figur 4.20 ses indtastningen af data for ventilatoren.

Figur 4.20. Indtast kendt arbejdspunkt - ventilator

Der er, som det ses i Figur 4.20, også mulighed for at indtaste en række arbejdspunkter for en applikation. Dette gøres ved først at klikke på knappen "Indfør data".

2	83
Ventilator Vandpumpe Hydraulikpumpe Trykluft Kølekompressor Anden motordrift	
$P_{hyd} = Q \begin{bmatrix} \frac{m^3}{s} \end{bmatrix} \cdot \Delta p \begin{bmatrix} Pa \end{bmatrix}$	
Last profil A 12 faste punkter Indfør data	
P4 - Belastning Ny beregnet P4 - Belastning Udgangseffekt [kW]: Virkningsgrad [%]: P3 - Hast [rpm]: Indgangseffekt [kW]: OFF 8,81 0,00 0 Inf OK	
Calc master = P4, Angiv Eta & hastighed	

Figur 4.21. Knap til aktivering af skema til indtastning af arbejdspunkter for applikation

Når der klikkes på knappen "Indfør data" fremkommer billedet vist i Figur 4.22. Her skal der indtastes 12 arbejdspunkter for applikationen. Det er nødvendigt med 12 datasæt for at danne valide matematiske udtryk for virkningsgraden. Der indtastes samhørende værdier for luftflow, trykstigning, hastighed og virkningsgrad.

Når de 12 arbejdspunkter er indtastet klikkes på der på "Ok".

2						X
I	ndfør 1	2 arbej	dspunk	ter:		
	Par. A	Par. B	Hast.	Eta		
01	25200	500	930	78		Hent fil
02	25200	1000	1190	82	1	Gem fil
03	25200	1500	1420	80	1	Slet tabel
04	36000	500	1130	65		
05	36000	1000	1340	77]	12 scheiden unktor?
06	36000	1500	1535	82		
07	46800	500	1330	57		
08	46800	1000	1515	69		
09	46800	1500	1680	76		
10	54000	500	1475	54		
11	54000	1000	1645	62		
12	54000	1500	1800	72		
		[ок	Ca	incel	

Figur 4.22. Indtastning af 12 arbejdspunkter for applikation

Herefter kan man, som det ses i Figur 4.23, får foretaget en beregning af den hydraulisk effekt, virkningsgrad, hastighed og tilført effekt til applikationen baseret på indtastning af luftflow og trykstigning.

2	83
Ventilator Vandpumpe Hydraulikpumpe Trykluft Kølekompressor Anden motordrift	
$P_{hyd} = Q \begin{bmatrix} \frac{m^3}{s} \end{bmatrix} \cdot \Delta p \begin{bmatrix} Pa \end{bmatrix} \qquad $	
Last profil A 12 faste punkter Indfør data	
P4 - Belastning Udgangseffekt [kW]: Ny beregnet Virkningsgrad [%]: P3 - Hast [rpm]: P4 - Belastning Indgangseffekt [kW]: Brug last profil 8,81 79,73 1279 11,04 OK	
Eta & hastighed beregnes fra last profil	

Figur 4.23. Beregning af hydraulisk effekt, virkningsgrad, hastighed og tilført effekt til applikationen baseret på indtastning af volumenstrøm og total trykstigning

Når der klikkes "Ok" overføres data, som det ses i Figur 4.24, til "System overblik".

The Motor System	ems Tool	Ì	ECO Desire autom			×
P4 ↓ Calc. ●	Automotive Constraints of the subset of the	P3	rsmission:	P2	Drive:	P1
P4 - Belastnin Effekt ud (kW 8,81 P4 Hast. [rpm] 1279 P4 Moment [Nm 65,74 Indtast kendt	Eta - Belastn. 79,7	P3 - Belastning Effekt ind [kvl]: 11,04 P3 Hast. [rpm]: 1279 P3 Moment [Nm]: 82,46	SkiftParsmission Eta - Transmission 87,4 100 - 80 - 60 - 40 - 20 - 0 -	P2 - Motor Akadeffett [KW]: 12,63 P2 Hast. [rpm]: 1066 P2 Moment [km]: 113,2	Eta -Motor & Omformer 55,4 Belastring [%]: 00 92,9 60 40 00 00 00 00 00 00 00 00 0	P1-Ortagen Effekt (W): 14,80 Alg ontostnig: 23,329. Euro (e)
OK	Belastning valg:: Manuel eta	Pm	Transmission valg: Auto eta om [kW]: 14,2		Drev valg: Auto eta	Gem system setup Hent system setup Skift hast.
Total system	virkningsgrad [%]	59,5 100	Factor: 1,1	Beregning (calc) master P4 - Belastning ud	Drev variant analyse:	Sloft arbeidspunkt Start forfra Stop program

Figur 4.24. System overblik baseret på det indtastede driftspunkt

Som nævnt tidligere kan der også vælges en pumpe og en applikation som hører under anden motordrift. Indtastningsfelterne til disse applikationer ses i Figur 4.25 og Figur 4.32.

4.1.11 Vandpumpe

For pumper skal der, som det ses i Figur 4.25, indtastes data for flow, løftehøjde mens densitet (Rho for væsken) og tyngdeaccelerationen default er indtastet. Disse værdier kan dog ændres. Der skal endvidere indtastes data for virkningsgrad og hastighed.

2	\times
Ventilator Vandpumpe Hydraulikpumpe Trykluft Kølekompressor Anden motordrift	
$P_{hyd} = Q \left[\frac{m^3}{s} \right] \cdot H \left[m \right] \cdot \rho \left[\frac{kg}{m^3} \right] \cdot g \left[\frac{m}{s^2} \right]$ Flow [m3/h] Head [m] Boo (m3/h) Head [m] Flow [m3/h] Head [m] Flow [m3/h	
Last profil A 12 faste punkter Indfør data	
P4 - Belastning Ny beregnet P4 - Belastning Udgangseffekt [kW]: Virkningsgrad [%]: P3 - Hast [rpm]: Indgangseffekt [kW]:	
10,89 65,66 2800 16,58 OK	

Figur 4.25. Indtast kendt arbejdspunkt for en pumpe

Når der klikkes på knappen "Indfør data" fremkommer et billede som vist i Figur 4.22. Her skal der indtastes 12 arbejdspunkter for applikationen. Det er nødvendigt med 12 datasæt for at

danne valide matematiske udtryk for virkningsgraden. Der indtastes samhørende værdier for flow, løftehøjde, hastighed og virkningsgrad.

4.1.12 Hydraulikpumpe

For pumper skal der, som det ses i Figur 4.26, indtastes data for volumenstrøm og trykstigning. Der skal endvidere indtastes data for virkningsgrad og hastighed.

Ventilator Vandpumpe Hydraulikpumpe Trykluft Kølekompressor Anden motordrift	<
$P_{4} = \frac{Q \cdot \Delta p}{600} [kW]$ $P_{4} = \frac{Q \cdot \Delta p}{600} [kW]$ $Adv. hydraulics calc$	
P4 - Belastning Ny beregnet P4 - Belastning Udgangseffekt [kW]: Virkningsgrad [%]: P3 - Hast [rpm]: Indgangseffekt [kW]: 71,30 86,60 1450 82,33 OK	

Figur 4.26. Indtast kendt arbejdspunkt for en hydraulikpumpe

Adv. hydraulics 🖉	; 01.vi		– 🗆 X
Flow [/min] Townargin [% af max] Townargin [% af max] Townargin [% af max]	Tryk [bar]	Pumpestørrelse 250 Flowmax [m3/s] 0.00573958	Styrestrategi 2
Absolut Maxlow [l/min] T 270 Flowminimum v. Omdrejningsreg. [% af max]	Absolut Maxtryk [bar]	Flowmax []/min] 344,375	Udregnet hydraulisk Effekt [kW] Udregnet virkningsgrad for hydraulikpumpe 71,14 91,47 Motor hastighed for proces [rpm]
30	* 1450		1450 Done

Figur 4.27. Indtastning af arbejdspunkt for applikation

Når der klikkes på knappen "Adv. hydraulics calc" fremkommer et billede som vist i Figur 4.27. Her skal der indtastes følgende for applikationen:

- Flow (aktuelt) Her indtastes flowet til en proces
- Flowmargin Her indtastes det flow pumpen skal kunne yde yderligere ud over det processen kræver. Flowmargen repræsenterer at flere typer af styre- og reguleringsventiler kræver et lille overløb.
- Maks. flow Her indtastes det maksimale flow der kan forekomme og som pumpen skal kunne yde
- Flow minimum ved omdrejningstalregulering Her indtastes det minimale flow pumpen kan yde ved omdrejningstalregulering
- Tryk (aktuelt) Her indtastes trykbehovet for en proces
- Trykmargin Her indtastes det tryk pumpen skal kunne yde yderligere ud over det processen kræver. Trykmargen repræsenterer tryktab i retningsventiler og eventuelt tryktab i bypass'ventiler.
- Maks. tryk Her indtastes det maksimale tryk der kan forekomme i en proces
- Pumpestørrelsen i et rullegardin
 Her vælges en pumpe i størrelsen fra 28 til 250 cm³ pr. omdrejning
- Reguleringsform i et rullegardin
 Her vælges reguleringsformen for pumpen

4.1.13 **Trykluft**

For trykluftkompressorer skal der, som det ses i Figur 4.28, indtastes data for tilgangstryk, afgangstryk, flow og adiabatkonstant. Der skal endvidere indtastes data for virkningsgrad og hastighed.

Figur 4.28. Indtast kendt arbejdspunkt for en trykluftkompressor

	Flow	Hast.	P1	Hast. Lineær	P1 Lineær	Drev bere P aksel	gning: Eta drev	
1	0	0	0	0,0	0,0	0,00	0,00	Hent fil
2	0	0	0	0,0	0,0	0,00	0,00	Gem fil
3	0	0	0	0,0	0,0	0,00	0,00	Slet tabel
4	0	0	0	0,0	0,0	0,00	0,00	
5	0	0	0	0,0	0,0	0,00	0,00	Mindst 2 arbejdspunkter OK?
5	0	0	0	0,0	0,0	0,00	0,00	-
7	0	0	0	0,0	0,0	0,00	0,00	
в	0	0	0	0,0	0,0	0,00	0,00	
9	0	0	0	0,0	0,0	0,00	0,00	
D	0	0	0	0,0	0,0	0,00	0,00	
1	0	0	0	0,0	0,0	0,00	0,00	
2	0	0	0	0,0	0,0	0,00	0,00	

Figur 4.29. Indtastning af 12 arbejdspunkter for applikation

Når der klikkes på knappen "Indfør data" fremkommer et billede som vist i Figur 4.29. Her skal der indtastes 12 arbejdspunkter for applikationen. Der indtastes samhørende værdier for flow, kompressorens hastighed og optagen effekt for motoren (P1).

4.1.14 Kølekompressor

For kølekompressorer skal der, som det ses i Figur 4.30, indtastes data for fordampningstemperatur, kondenseringstemperatur og kølekapacitet. Der skal endvidere indtastes data for virkningsgrad og hastighed.

Ventilator Vandpumpe Hydraulikpumpe Trykluft Kølekompressor Anden motordrift $COP_{Carnot} = \frac{T_0 + 273,15}{T_k - T_0}$ $P_{Carnot} = \frac{Q_0}{COP_{Carnot}}$ Fordampnings Kølekapacitet $U_0 = \frac{1}{2}$ $V_0 = \frac{1}{2}$ $V_0 = \frac{1}{2}$ $V_0 = \frac{1}{2}$ Last profil B Indfør data COP carnot $V_0 = \frac{1}{2}$	×
P4 - Belastning Ny beregnet P4 - Belastning Udgangseffekt [kW]: Virkningsgrad [%]: P3 - Hast [rpm]: Indgangseffekt [kW]: 79,77 40,67 1450 196,16 OK	

Figur 4.30. Indtast kendt arbejdspunkt for en kølekompressor

	Flow	Hast.	P3	Hast. Lineær	P3 Lineær	
01	0	0	0	0	0	Hent fil
)2	0	0	0	0	0	Gem fil
)3	0	0	0	0	0	Slet tabel
)4	0	0	0	0	0	
)5	0	0	0	0	0	Mindst 2 arbejdspunkter OK?
)6	0	0	0	0	0	-
)7	0	0	0	0	0	
8	0	0	0	0	0	
9	0	0	0	0	0	
10	0	0	0	0	0	
11	0	0	0	0	0	
12	0	0	0	0	0	

Figur 4.31. Indtastning af 12 arbejdspunkter for applikation

Når der klikkes på knappen "Indfør data" fremkommer et billede som vist i Figur 4.31. Her skal der indtastes 12 arbejdspunkter for applikationen. Der indtastes samhørende værdier for køleydelse, kompressorens hastighed og virkningsgrad.

4.1.15 Anden motordrift

For anden motordrift kan der, som det ses i Figur 4.32, indtastes data for en parameter A og en parameter B, som er karakteristisk for applikationen. Endvidere skal den hydrauliske effekt indtastes direkte. Der skal endvidere indtastes data for virkningsgrad og hastighed for applikationen.

Hvis virkningsgraden ikke kendes, kan værdierne angivet i Figur 4.33 anvendes som overslagsværdier.

2 ×
Ventilator Vandpumpe Hydraulikpumpe Trykluft Kølekompressor Anden motordrift
Anden motordrift (Ingen beregning) Parameter - A Parameter - B Kendt P4 [kW] (1000 (1000 (1000 (1000))) Forslag til virkningsgrader
P4 - Belastning Ny beregnet P4 - Belastning Udgangseffekt [kW]: Virkningsgrad [%]: P3 - Hast [rpm]: Indgangseffekt [kW]: 8,80 52,35 1450 16,81 OK

Figur 4.32. Indtast kendt arbejdspunkt for anden motordrift

Applikation	Eta - Anslået
Transportbånd	40 - 50 %
Omrører	70 - 80 %
Homogenisator	95 - 97 %
Centrifuge	96 - 98 %
Hammermølle	70 - 80 %
Knuser	90 - 95 %
Bukkemaskine	90 - 95 %
Pressemaskine	90 - 95 %
Fræsemaskine	90 - 95 %
Boremaskine	90 - 95 %
Høvlemaskine	90 - 95 %
Pudsemaskine	90 - 95 %

Figur 4.33. Bud på virkningsgrader for applikationer til anden motordrift

I Figur 4.18 ses, at programmet giver en række oplysninger om de fire komponenter i det motordrevne maskinsystem:

- For belastningen, transmissionen og motoren (markeret med rødt) angives, som det ses i Figur 4.18, virkningsgraden
- For transmissionen og motoren (markeret med blåt) angives foruden effekten også omdrejningstallene og momentet
- For transmissionen og motoren (markeret med grønt) angives den nominelle effekt og belastningsgraden. For motoren angives dog kun belastningsgraden.

For både transmissionen og motoren kan der komme advarsler (røde blink), hvis belastningsgraderne bliver enten for høje eller for lave.

- For hele det motordrevne maskinsystem (markeret med gult) angives totalvirkningsgraden.
- For belastningen, transmissionen og motoren (markeret med lilla) er det muligt at klikke på knapperne "Last valg", "Transmissions valg" og "Drive valg". Herved er det muligt, manuelt, at indtaste virkningsgrader for de tre komponenter.

Som nævnt tidligere angives belastningens virkningsgrad som udgangspunkt til 65 % ("Auto beregn"). Virkningsgraden bør ændres manuelt til en skønnet eller målt virkningsgrad. I Figur 4.18 er valgt en virkningsgrad for belastningen på 84 %.

Når man har indtastet data vedr. remtrækket (se under punkt 4.1.2) og man efterfølgende vælger at angive virkningsgraden for remtrækket manuelt, skal man være meget varsom. Det skyldes, at man tidligere har fået beregnet den nominelle effekt på hele remtransmissionen. Vælger man herefter selv at angive remtransmissionens virkningsgrad og vælger man denne for lav, vil der ikke være sammenhæng mellem det remmen kan afgive og det som belastningen skal have tilført.

Vælger man eksempelvis at angive virkningsgraden til 50 %, vil belastningsgraden være ca. 10 %. Et remtræk som vist i Figur 4.13 med en nominel effekt på 18,5 kW, vil således kun kunne overføre 10 % af den nominelle effekt svarende til 1,85 kW. Det er langt fra de 10,48 kW som belastningen, iflg. Figur 4.18, skal have tilført.

I dette tilfælde må man ændre inddataene vedr. remtransmissionen eller belastningens arbejdspunkt (se de næste pinde), da man ellers risikerer at det beregnede tab i remtransmissionen, bliver urealistisk højt.

- For belastningen, transmissionen samt motoren og styringen (markeret med orange) er det muligt at ændre de indtastninger der blev foretaget i forbindelse med de indledende indtastninger (se Figur 4.2).
- Belastningens arbejdspunkt ændres ved at klikke på "Skift arbejdspunkt" (markeret med lyserød). Klikker man på kappen fremkommer billedet vist i Figur 4.16. Her er det bl.a. muligt at ændre det aktuelle arbejdspunkt i kW samt omdrejningstallet for belastningen.

Foruden "Skift arbejdspunkt" er der yderligere otte knapper markeret med lyserød. Disse knapper beskrives nedenfor:

• Gem system setup

Klikker man på knappen "Gem system setup" kan man gemme alle de data man har indtastet for et pågældende system. Det er systemet med det sidst indtastede driftspunkt der gemmes.

• Hent system setup

Klikker man på knappen " Hent system setup" kan man hente alle de data man tidligere har indtastet for et pågældende system. Som nævnt før, er det systemet med det sidst indtastede driftspunkt der gemmes.

• Skift hastighed

Her er implementeret en kalkule, således at man kan ændre hastigheden i forhold til nuværende arbejdspunkt, og der udregnes nye effekter i hele kæden baseret på den valgte momentkurve. Der tages udgangspunkt i P_4 men med ny hastighed.

Når man klikker på knappen "Skift hastighed" fremkommer skærmbilledet i Figur 4.34.

2
Nuværende system:
P4 effekt [kW]: P4 hast. [rpm]: 8,80 1740
Moment kurve: P4 moment [Nm]:
3000 - Ny hastighed:
2500 -
2000 - Beregnet moment [Nm]:
1500 - 27,2
1000 - Baragnet offekt [kw];
500- 3,71
0-
ОК

Figur 4.34 – Skift hastighed

The Motor Syst	ems Tool	1	Υ	1		×
System overbik	For situation Efter situation	on Energiberegner	ECO-Design evaluation	Evaluation of potential		Version: 2.17.12
Be	elastning:	Trai	nsmission:	Motor &	Drive:	
P4 ↓	•	P3		P2	Design of the second se	P1
Calc. O master	Pumper, ventilatorer etc.	آ ۞	XPB 100 Skift transmission		PWM IE2 - 18,50 kW	
P4 - Belastnir Effekt ud [k\\ 3.71	ng Eta - Belastn.]: 65,0	P3 - Belastning Effekt ind [kW]: 5.71	Eta - Transmission 86,9	P2 - Motor Akseleffekt [kW]: 6.58	Eta - Motor & Omformer 83,8	P1 - Optagen Effekt [kW]: 7.84
P4 Hast. [rpm 1305	100-]: 80- 60-	P3 Hast. [rpm]: 1305	100 - 80 - 60 -	P2 Hast. [rpm]: 1088	100 Belastning [%]: 80 47,4 60	Årlig omkostning:
P4 Moment [Nr 27,17 Indtast kend	n]: 40 20-	P3 Moment [Nm]: 41,79	40-20-	P2 Moment [Nm]: 57,74	40 20	12.365,- Euro [€]
arb. punkt: OK	Belastning valg::		Transmission valg:		Drev valg:	Gem system setup
	Auto eta (Lâst på 65%)	Pn	Auto eta om [kW]: 14,4		Auto eta	Hent system setup
Total system	nvirkningsgrad [%]	47,3 Belast	hing [%]: 39,6 Factor: 1,1	eregning (calc) macter	Provident and an	Skift arbejdspunkt
0 20	40 60 80	100	HTML Output	P4 - Belastning ud	Drev vanant analyse:	Start forfra Stop program

I Figur 4.35 ses data for systemet med den nye hastighed på 1.305 rpm.

Figur 4.35 – System med ændret hastighed

- Start forfra Klikker man på knappen "Start forfra" slettes alt og man kan fortage nye indtastninger.
- Stop program Klikker man på knappen "Stop program" lukkes programmet ned.
- Før situation

Når man klikker på knappen "Før situation" er det muligt at foretage beregninger af elforbruget til det motordrevne maskinsystem i forskellige driftspunkter.

Når man har markeret en linje med et flueben og klikker på knappen "Tilføj linje" fremkommer et lille billede "Driftstimer for snapshot" (se Figur 4.36) med et indtastningsfelt, hvor kan man angive et årligt driftstimetal for et givent driftspunkt og få beregnet elforbruget. Der er mulighed for at få beregnet elforbruget i otte driftspunkter.

enroverbik	Før situation	Efter s	ituation	Energibere	gner	ECO-Desig	n evaluation	Evaluatio	n of potent	ial							Version
Sna	pshots:		ĺ	Her	nt fil		Gem fil		Slet val	gte	So	rtér tabel			Ti	føj linie	
	Par. A	Par. B	P4 [kW]	Eta load	P3 [k)	N] P3 [rp	m] Eta trans	. P2 [kW]	P2 (rpm)	Eta moto	r Eta VSE	P1 [kW]	Eta tota	al Hours/ye	ar Days/ye	ar kWh/year	
			0	0					0	0					0	0	
		0	0	0	0	0	0	0	0	0	0	0	0		0	0	
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
			0							-	X					0	
						-											
			0														
	0	0	0	0	0		Driftsti	mer fo	r snap	shot		0	0	0	0	0	
P4 - Belastning Effekt ud [kW] 8,81	g Eta -]: 6	Belastn. 5,0	P3 Eff	3 - Belastnin fekt ind [kW 13,55	a]:	E	Angiv veni for dette s	igst antal år napshot - i i	lige driftstir gennemsnit	ner :		Eta	- Motor &	. Omformer 7, 1		P1-Op Effekt	otagen [kW]: 79
P4 - Belastning Effekt ud [kW] 8,81 P4 Hast. [rpm] 1740 4 Moment [Nm 48,33 Indtast kendt	g Eta -]: 6 100 -]: 80 - 1]: 40 - 20 -	Belastn. 5,0	P3 Eff P3 P31	3 - Belastnin fekt ind [kW 13,55 8 Hast. [rpm] 1740 Moment [Nir 74,35	g]:]:	E	Angiv veni for dette s	igst antal år inapshot - i i Årlige time 1000 Ok	lige driftsti gennemsnit r [h]:	mer	3ekz J	Eta stning [%]: 83,8	- Motor & 87 100 - 80 60 40 20	Omformer		P1- Op Effekt 17, Årlig om 28.04 Euro	otagen [kW]: .79 kostnin 47,- [€]
P4 - Belastning Effekt ud [kW] 8,81 24 Hast. [rpm] 1740 4 Moment [Nim 48,33 Indtast kendt arb. punkt:	g Eta - 1: 6 100 - 1: 80 - 1: 80 - 1: 40 - 20 - - - - - - - - - - - - - -	Belastn. 5,0	P3 Eff P3 P3	3 - Belastnin fekt ind [kW 13,55 Hast. [rpm] 1740 Moment [Nir 74,35	ם]:]:]:	E 0-	Angiv veni for dette s	igst antal år inapshot - i i Årlige time 1000 Ok	ige driftsti gennemsnit r (h):	ner	3ela	Eta stning [%]: 83,8	- Motor & 87 100 - 80 60 40 20 0	. Omformer 7,1	_	P1 - Op Effekt 17, Årlig om 28.0 Euro	otagen [kW]: ,79 kostnin 47,- [€]
P4 - Belastning Effekt ud [kW] 8,81 24 Hast. [rpm] 1740 4 Moment [Nm 48,33 Indtast kendt arb. punkt: OK	g Eta - 6 100 - 100 - 10	Belastn. 5,0	P3	- Belastnin fekt ind (kW 13,55 Hast. [rpm] 1740 Moment [Nm 74,35	9;]:]:	E 0 ⁻¹ Transmissic	Angiv veni for dette s	igst antal år inapshot - i i Årlige time 1000 Ok	ige driftsti gennemsnit r [h]:	ner	3ela	Eta stning [%]: 83,8	- Motor & 87 100 - 80 40 20 - 0 - Drev va	.Omformer 7,1		P1-Op Effekt 17, Årlig om 28.04 Euro	(kw]: ,79 kostnin 47,- [€]
P4 - Belastnin Effekt ud [kW] 8,81 P4 Hast. [rpm] 1740 4 Moment [Nm 48,33 Indtast kendt arb. punkt: OK	e Eta - 6 100 - 100 - 10	Belastn. 5,0	P3 P3	3 - Belastrini fekt ind (kW 13,55 Hast. [rpm] 1740 Moment [Nim 74,35	g]:]:	E 0 = Transmissic	Angiv veni for dette s	igst antal år napshot - i i Årlige time 1000 Ok	lige driftsti pennemsnit r [h]:	ner :	3ela	Eta stning [%]: 83,8	- Motor & 87 100 - 80 60 40 20 0 - Drev va	. Omformer 7,1		P1 - Op Effekt 17, Årlig om Euro Gem system	otagen [kW]: 79 kostnin 47,- [€]
P4 - Belastning Effekt ud (kW) 8,81 P4 Hast. [rpm] 1740 4 Moment [Nm 48,33 Indtast kendt arb. punkt: OK	Eta - 6 100 - 100 - 100 - 20 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	Belastn. 5,0 ng valg:: D o eta aš 65%)	P3 P3 P3	3 - Belastrinn fekt ind [kW 13,55 Hast. [rpm] 1740 Moment [Nm 74,35]:]:	E 0 ⁻¹ Transmissic Auto	Angiv veni for dette s on valg:	igst antal år inapshot - i i Årlige time 1000	lge driftsti gennemsnit r [ħ]:	ner	3ela	Eta stning [%]: 83,8	- Motor & 87 100 - 80 - 40 - 20 - 0 - Drev va Auto	.Omformer 7,1		P1 - Op Effekt 17, Årlig om Euro Gem system Hent system	otagen [kW]: 79 kostnin 47,- [€] setup
P4 - Belastning Effekt ud (kW) 3,81 24 Hast. (rpm) 1740 4 Moment (Nm 48,33 Indtast kendt arb. punkt: OK	g Eta - 1 100 - 1 100 - 1 100 - 1 100 - 1 100 - 1 100 - 0 - 1 100 - 1 100 - 0 - 1 100 - 0 - 1 100 - 0 - 1 100 - 0 - 1 100	Belastn. 5,0 ng valg:: D o eta oª 65%)	P3	3 - Belastnin fekt ind [kW 13,55 I Hast. [rpm 1740 Moment [Nm 74,35	g]:]:]: P nor	E 0 - Transmisse Auto	Angiv veni for dette s on valg:	igst antal år inapshot - i r Årlige time 1000 Ok	lige driftsti gennemsnit r [h]:	ner	3ela J	Eta stning [%]: 83,8	- Motor & 87 100 - 80 60 40 20 - 0 - Drev va Auto	. Omformer 7,1		P1 - Or Effekt 17, Årlig om Euro Gem system Hent system Skift has	btagen [kw]: 79 kostnin 47,- i [€] setup setup st.
P4 - Belastnin Effekt ud (RW) 8,81 24 Hast. (rpm) 1740 4 Moment (Nm 48,33 Indtast kiendt arb. purkt: OK	g Eta - []: 6 100 - 100 - 100 - 100 - 100 - 100 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	Belastn. 5,0 ing valg:: D o eta så 65%) grad [%	P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P	3 - Belastring Fekt ind [kW 13,55 Hast. [rpm] 1740 Moment [Nm 74,35	g];]; P nor Pelastnin F	E 0 Transmissic Auto n (kW): 2 2 3 gg (%): 2 2 actor: 5	Angiv veni for dette s n valg: 	igst antal år inapshot - i i Årlige time 1000 Ok	lige driftsti gennemsnit r [h]:	ner	3ela	Eta stning [%]: 83,8	- Motor & 87 100 - 80 - 40 - 20 - 0 - Drev va Auto	Omformer 7,1		P1 - Op Effekt 17, Årlig oml 28.0 Euro Euro Gem system Hent system Skift has Skift arbejds	tagen [kw]: 79 kostnin 47,- [€] - setup setup st. spunkt

Figur 4.36. Før situation – angivelse af driftstimer

I Figur 4.37 ses data for systemet, når brugeren har klikket på "Ok" i billedet i Figur 4.36.

Figur 4.37. Før situation – tilføjelse af linje med data for system

I Figur 4.38 ses data for systemet i tre driftssituationer.
overblik	Før situation	Efter s	ituation	Energibere	gner E	ECO-Design e	valuation	Evaluatio	n of potent	ial						Ve
Sna	pshots		(Не	nt fil		Gem fil		Slet val	jte (Sor	tér tala	1	l	Tilf	øj linie
	Par. A	Par. B	P4 [kW]	Eta load	P3 [kV] P3 (rpm)	Eta trans	. P2 [kW]	P2 [rpm]	Eta moto	r Eta VSD	P1 [kW]	Eta total	Hours/yea	r Days/yea	ar kWh/year
	31700	1000	8,806	65	13,55	1740	87,41	15,5	1450	100	87,13	17,79	49,5	1000	42	17790
	24000	540	3,6	65	5,538	1740	85,99	6,441	1450	100	82,63	7,795	46,18	2000	83	15590
	16000	250	1,111	65	1,709	1740	79,33	2,155	1450	100	64,54	3,339	33,28	2000	83	6677
	0						0									
	0										0					
	0															
	0															
Belastning kt ud [kW]	Eta -	Belastn.	P3 Eff	- Belastnin ekt ind [kW 1,71	g]:	Eta - Transm 79,3	ission	P2 - Mo Akseleffekt 2,1	or [kW]:			Eta	- Motor & 0	Omformer		P1 - Opta Effekt [ki 3,34
Belastning kt ud [kW] 1,11 last. (rpm] 1740 ment [Nm 6,098 last kendt punkt:	Eta - Eta - 100 - : 80 - : 80 - : 80 - : 90	Belastn.	P3 P3	- Belastnin iekt ind [kW 1,71 Hast. [rpm 1740 Moment [Nr 9,381	g]:]:	Eta - Transm 79,3 100 - 80 - 60 - 40 - 20 -	ission	P2 - Mo Akseleffek 2, 1 P2 Hast. [1450 P2 Moment 14, 19	or [kW]: pm]: [Nm]:		Belas	Eta tning [%]: 11,6	- Motor & 0 64, 80 40 20 0-	Omformer 5		P1 - Opta Effekt (k) 3,34 Årlig omkos 5.264, Euro (€
Belastning kt ud [kW] 1,11 1740 2000 Market (Nim 6,098 tast kendt . punkt: OK	Eta - 100 - : 80 - : 80 - : 40 - : 20 - : Belastr	Belastn. 55,0	P3 Eff P3 P3N	- Belastnin ekt ind [kW 1,71 Hast. [rpm 1740 Moment [Nr 9,381	g]:]:]:]	Eta - Transm 79,3 100 - 60 - 40 - 20 - 0 -	valg:	P2 - Mo Akseleffekt 2, 1 P2 Hast. 1450 P2 Moment 14, 19	or [kw]: pm]: [Nm]:		Belas	Eta tning [%]: 11,6	- Motor & C 64, 100 - 60 - 40 - 20 - 0 - Drev valg	Omformer 5		P1 - Opta Effekt [ki 3,34 Årlig omkos 5.264, Euro [€
Belastning kt ud [kW] 1,11 last. (rpm) 1740 oment [Nm 6,098 tast kendt . punkt: OK	Eta -	Belastn. 55,0	P3 Eff P3 P3 N	- Belastnin iekt ind [kW 1,71 Hast. [rpm 1740 Moment [Nr 9,381	g]:]:]:]	Eta - Transm 79,3 100 - 80 - 40 - 20 - 0 -	valg:	P2 - Mo Akseleffek 2,1: P2 Hast. 1450 P2 Moment 14,19	pm]:		Belas	Eta tning [%]: 1,6	- Motor & C 64, 100 - 40 - 20 - 0 - Drev valg	Omformer 5		P1 - Opta Effekt (ki 3,34 Årlig omkos 5.264, Euro (¢
Belastning kt ud [kW] 1,11 iast. (rpm] 1740 ment [Nm 6,098 tast kendt , punkt: OK	201 31 40 31 40 31 40 31 40 40 31 40 40 40 40 40 40 40 40 40 40 40 40 40 4	Belastn. 55,0	P3 Eff P3 P3 P	- Belastnin iekt ind [kW 1,71 Hast. [rpm 1740 Koment [Nr 9,381	g]:]:]:]	Eta - Transm 79,3 100 - 80 - 40 - 20 - 0 - 7ransmission - Auto et	valg:	P2 - Mo Akseleffek 2, 1: P2 Hast. 1450 P2 Moment 14, 19	or [kW]: pm]: [Nm]:		Belac	Eta	- Motor & C 64, 100 - 40 - 0 - Drev valg Auto	Omformer 5		P1 - Opta Effekt (k 3,34 Arig omkos 5.264, Euro (E Gem system se Hent system se
Belastning kt ud [kW] 1,11 iast. [rpm] 1740 oment [Nm 6,098 tast kendt , punkt: OK	20- 3 400 Belastr Warknings	Belastn. 55,0 ning valg:: uuel eta	P3 Fff P3 P3 7 7 33,	- Belastnin iekt ind [kW 1,71 Hast. [rpm 1740 Moment [Nr 9,381	g]:]:]:]]]]]]]]]]]]]]]	Eta - Transm 79,3 100 60 40 20 0 1 7ransmission 40 10 20 0 1 8 40 10 20 0 10 10 10 10 10 10 10 10 10 10 10 10	valg:	P2 - Mo Akseleffek 2, 1: P2 Hast. [1450 P2 Moment 14, 19	or [kW]: pm]: [Nm]:		Belas	Eta	- Motor & C 64, 100	Dmformer 5		P1 - Opta Effekt [6 3,34 4 Arlig omkos 5.264, Euro [6 Gem system se Skift hast. Skift arbejdspu

Figur 4.38. Før situation – tre driftspunkter (driftsprofil)

Som det ses i Figur 4.38 (markeret med mørkeblå) kan man hente og gemme en fil med driftspunkter ("Hent fil" og "Gem fil").

Det er endvidere muligt at slette data ("Slet valgte") og sortere data i tabellen ("Sorter tabel")

• Efter situation

Når man klikker på knappen "Efter situation" er det muligt at foretage beregninger af elforbruget til det motordrevne maskinsystem i forskellige driftspunkter (se Figur 4.39).

Fremgangsmåden er nøjagtig magen til den der benyttes i før situationen.

			1	energioene	gne co	o-besign e	valuauon		n or potern							
Snap	shots	:	Į.	Не	nt fil		Gem fil		Slet val	pte	Sort	ér tabel	1		Til	øj linie
	Par. A	Par. B	P4 [kW]	Eta load	P3 [kW]	P3 (rpm)	Eta trans.	. P2 [kW]	P2 [rpm]	Eta motor	Eta VSD	P1 [kW]	Eta total	Hours/ye	ar Days/ye	ar kWh/year
	31700	1000	8,806	84	10,48	1740	87,31	12,01	1450	100	86,66	13,85	63,56	1000	42	13850
	24000	540	3,6	84	4,286	1740	84,76	5,056	1450	100	79,88	6,33	56,87	2000	83	12660
	16000	250	1,111	84	1,323	1740	78,02	1,696	1450	100	58,77	2,885	38,52	2000	83	5769
H																
ist. [rpm]: 1740 ment [Nm]: 5,098 ast kendt punkt: OK	80 60 20 Belastr	ing valg::	P3 1	Hast. [rpm 1740 Moment [Nn 7,259]: n]: Tri	80 60 40 20 0-	valg:	P2 Hast. [1450 P2 Moment 11,17	rpm]: [Nm]:		Belast	tning [%]: 9,2	80 60 40 20 0- Drev valg			Årlig omko 4.549 Euro [
	Mar	uel eta			P nom [k	Auto et W]: 18,	a 5						Auto	eta		Hent system s
systemv	virknings	grad [%	38,	,5	Belastning [Fac	%]: 7,2 tor: 1,1	Be	eregning	(calc)	master		Drev var	iant analys	e:		Skift arbejdsp

Figur 4.39. Efter situation – tre driftspunkter

• Energiberegner

Når man klikker på knappen "Energiberegner" (se Figur 4.40) er det muligt at få et overblik over elforbruget til det motordrevne maskinsystem i før og efter situationen.

Figur 4.40. Energiberegner

5 Eksempler på brug af værktøjet - ventilationssystem

Nedenfor ses et eksempel på brug af værktøjet. Eksemplet omhandler optimering af et ventilationssystem foretaget af en energirådgiver.

Anlægget er et VAV-anlæg, dvs. med variabel volumenstrøm. Der vises et eksempel på optimering af systemet i tre driftspunkt, hvor ventilatoren normalt kører.

Energirådgiveren har målt og registreret følgende:

- Volumenstrøm
- Total trykstigning over ventilatoren
- Effektoptag for motoren
- Motorens omdrejningstal (registreret via den angivne frekvens på frekvensomformeren)

5.1 Data for ventilationssystemet

Nedenfor ses energirådgiverens beskrivelse af de komponenter der indgår i ventilationssystemet. Foruden ventilatoren indgår der en transmission, en motor og en styringsenhed.

5.1.1 Ventilator

Ventilatoren er af ældre data og er med fremadkrummede skovle. Det har ikke været muligt for energirådgiveren at fremskaffe en ventilatorkurve.

5.1.2 Remtransmission

Remtransmissionen består af 3 stk. XPB-remme (fortandede smalkileremme). Diameteren på den lille remskive er 112 mm og udvekslingsforholdet er 1,5. Den forventede remhastighed svarer i dette tilfælde til motorens.

5.1.3 Motor

Motoren er en 4-polet 18,5 kW IE1 motor.

5.1.4 Styring

Der benyttes en frekvensomformer til ændring af motorens og ventilatorens omdrejningstal.

5.2 Målinger og registreringer på ventilationssystemet

Driftspunkt	Volumenstrøm	Total trykstigning	Effektoptag	Omdrejningstal
	[m³/h]	[Pa]	[kW]	[rpm]
1	32.000	1.000	18,5	1.260
2	24.000	540	7,7	930
3	16.000	250	3,0	638

I tabel 5.1 ses målinger og registreringer på ventilationssystemet

Tabel 5.1. Målinger og registreringer på ventilationssystemet

5.3 Inddatering i programmet

I Figur 5.1 vælges først et momentprofil. Da der er tale om en ventilator vælges en applikation med kvadratisk moment

Figur 5.1. Valg af momentprofil

2	×
Valg af transmission:	
Rem transmission Gear transmission Ingen transmission	
Vælg rem type: Kilerem smal fortandet Vælg remskive	
Vælg rem variant: Udveksling:	
XPB 🗸 1,5 🗸	
Mindste remskive diameter [mm]Antal remme:Forventet rem- hastighed [rpm]:Nominel effekt på remme [kW]:112126018,62	
Remme: fordele & ulemper Ok God råd om remme	

Herefter indtastes, som det ses i Figur 5.2, data for transmissionen.

Figur 5.2. Indtastning af data for transmission

Endelig indtastes der, som det ses i Figur 5.3 og Figur 5.4, data for motoren og styringen.

Figur 5.3. Data for motor

Figur 5.4. Data for styring

I figur 5.5 indtastes et kendt arbejdspunkt som er effektoptaget og omdrejningstallet i driftspunkt 1.

2					×
Indtast kendt a	arbejdspunkt:				
P4 0	Last P ₃	Transmission	P ₂	Motor & Omformer	P₁
Indtast arbejdspunkt:	Hastighed P3: 840 Arbejdspunkt Effekt [kW]:	Hastighed P2:	1260 140,2 leregnet moment [\tm]	Calc. master: P1 - Optagen effekt	Ok

Figur 5.5. Indtastning af kendt arbejdspunkt

Til slut indtastes, som det ses i Figur 5.6, data for ventilatoren.

2	×
Ventilator Vandpumpe Hydraulikpumpe Trykluft Kølekompressor Anden motordrift	
$P_{hyd} = Q \begin{bmatrix} \frac{m^3}{s} \end{bmatrix} \cdot \Delta p [Pa]$	
Last profil A 12 faste punkter Indfør data	
P4 - Belastning Udgangseffekt [kW]: Virkningsgrad [%]: P3 - Hast [rpm]: Indgangseffekt [kW]: 8,89 62,83 840 14,15 OK	

Figur 5.6. Indtastning af data for ventilator

5.4 Output fra programmet

I Figur 5.7 ses output fra programmet. Virkningsgraden for ventilatoren er beregnet til 62,8 %.

Figur 5.7 – Output fra programmet – før gennemførelse af tiltag

De tro andre driftspunkter kan derefter indtastes. Det sker ved at klikke på "Skift arbejdspunkt". Her indtastes nye værdier for effektoptag og omdrejningstal. Endvidere indtastes de tilhørende værdier for volumenstrøm og total trykstigning. Det sker ved at klikke på knappen "Indtast kendt arb. punkt".

Data overføres til skemaet for før situationen som det ses i Figur 5.8.

Figur 5.8. Før situation - ventilationssystem

5.5 Udskiftning af komponenter i ventilationssystemet

Virkningsgraden for ventilatoren ligger, som det ses i Figur 5.8, på 61 - 63 %. Energirådgiveren beslutter derfor at undersøge hvor stor elbesparelse der kan opnås ved udskiftning af ventilatoren. I forbindelse med udskiftning af ventilatoren er det også oplagt at udskifte IE1 motoren til en IE3 motor. Det vil også være nødvendigt at foretage en ændring vedr. transmissionen, da ventilatorens omdrejningstal ved de forskellige driftspunkter er højere end den eksisterende ventilators. Dette ses senere i afsnittet.

Energirådgiveren har fundet en ventilatorkurve for en ny og effektiv ventilator der vil kunne erstatte den eksisterende. Ventilatorkurven ses i Figur 5.9. I figuren er indtegnet de nuværende driftspunkter, som i eftersituationen er uændrede,

Figur 5.9. Ventilatorkurve for ny ventilator med angivelse af tre driftspunkter

I Figur 5.10 ses data for transmissionen i efter situationen. Der benyttes stadig den sammen remtype, men udvekslingsforholdet er ændret fra 1,5 til 1,2 og den mindste remskive diameter er ændret fra 112 mm til 100 mm.

2	\times
Valg af transmission:	
Rem transmission Gear transmission Ingen transmission	-1
Vælg rem type: Kilerem smal fortandet	
Vælg rem variant: Udveksling:	
XPB	
Mindste remskive diameter [mm] Forventet rem- hastighed [rpm]: Nominel effekt på remme [kW]: 100 100 1524 16,50	
Remme: fordele & ulemper Ok God råd om remme	

Figur 5.10. Indtastning af data for transmission

I Figur 5.11 ses data for den nye motor. Der benyttes nu en 15 kW IE3 motor, hvor der før ændringen blev benyttet en 18,5 kW IE1 motor.

2	\times
Standard motor	IEC
Motor størrelse [kW]:	152 40034-38-1
15 🗸	
IE Klasse:	
IE3 motor 🤝	
Antal poler:	
4 pole 🗸	
Nominel Akseleffekt [kW]:	
Nominal Eta [%]: 92,1	
Ok	

Figur 5.11. Data for motor

I Figur 5.12 ses indtastning af et kendt arbejdspunkt. Arbejdspunktet er fundet i ventilatorkurven vist i Figur 5.9.

>							×
Indta	st kendt	arbejdspunł	at:				
	P ₄ •	Last	P ₃	Transmission	P ₂	Motor & Omformer	P 1 O
Indta arbe	ast jdspunkt	Hastighed P3: Arbejc Effekt : : : : : : : : : : : : : : : : : : :	1283 Ispunkt [kW]: 8,89 dspunkt ghed [rpr 1283	Hastighed P2:	1540 66,17 Beregnet mome	Calc. master: P4 - Belastning i nt [Nm]	ud

Figur 5.12. Indtastning af kendt arbejdspunkt

I Figur 5.13 ses tolv arbejdspunkter for den nye ventilator. Arbejdspunkterne er hentet fra ventilatorkurven vist i Figur 5.9.

>					×
I	ndfør 1	2 arbej	dspunk	ter:	
	Flow	Tryk	Hast.	Eta	
01	25200	500	930	78	Hent fil
02	25200	1000	1190	82	Gem fil
03	25200	1500	1420	80	Slet tabel
04	36000	500	1130	65	
05	36000	1000	1340	77	12 aukasidan unktara
06	36000	1500	1535	82	12 arbejuspunkter?
07	46800	500	1330	57	
08	46800	1000	1515	69	
09	46800	1500	1680	76	
10	54000	500	1475	54	
11	54000	1000	1645	62	
12	54000	1500	1800	72	
			ОК	Ca	ncel

Figur 5.13. Arbejdspunkter for ventilator

I Figur 5.14 ses beregnede data for ventilatoren baseret på indtastning af volumenstrøm og total trykstigning.

Figur 5.14. Data for ventilator

I Figur 5.15 ses output fra programmet eller systemoverblik baseret på indtastningen af volumenstrøm og total trykstigning over ventilatoren. Som det ses, har værktøjet foretaget beregninger for de andre komponenter i systemet.

Figur 5.15 - Output fra programmet – efter gennemførelse af tiltag

Som det ses i Figur 5.15 er virkningsgraden for remtransmissionen 87,4 %, hvilket er relativt lavt. Energirådgiveren beslutter sig for at undersøge besparelsespotentialet ved udskiftning af remskiverne. De eksisterende remskiver erstattes med remskiver på henholdsvis 180 mm og 220 mm med kun et spor, dvs. der benyttes kun en rem. Som det ses i Figur 5.16 kan en rem i en transmission med en mindste remskive på 180 mm ikke overføre den samme effekt som tre remme i en transmission med en mindste remskive på 100 mm, men forskellen er ikke større end at det vil kunne fungere.

Valg af tran	smission:				
Rem transmission	Gear transmissio	on 📔 Ingen tra	ansmission		
	Vælg rem type: Kilerem smal for	rtandet 🗸	Placering af m (hurtigste) rer	indste nskive	
Vælg rem var	iant: Udve	eksling:			
XPB		1,2 🗸			
Mindste rems diameter [mn 180	kive 1] Ant	tal remme: $\frac{7}{1}$	Forventet rem- hastighed [rpm]:	Nominel effekt på remme [kW]: 15,49	
					_
Remme: for	dele & ulemper	Ok	G	od råd om remme	1

Figur 5.16. Valg af større remskiver

Som det ses Figur 5.17 forbedres virkningsgraden for remtransmissionen fra 87,4 % til 96,7 % ved gennemførelse af tiltaget

Figur 5.17. Output fra programmet efter udskiftning af remskiver

Energirådgiveren beslutter sig til sidst for at undersøge besparelsespotentialet ved at benytte en 15 kW PM motor i stedet for 15 kW IE3 motoren.

Figur 5.18. Udskiftning til 12,3 kW PM motor

Som det ses i Figur 5.18 bliver effektoptaget for motoren i det dimensionerende driftspunkt 12,69 kW, når systemet er optimeret med de nye komponenter. Før systemoptimeringen var effektoptaget 18,5 kW. Det svarer til en reduktion på ca. 31 %.

I Figur 5.19 ses hvorledes tre driftstilstande er overført til skemaet for efter situationen.

Figur 5.19. Efter situation - ventilationssystem

ystem overblik Før	situation Eft	er situation	Energiberegner	ECO-Des	sign evaluation	Evaluation of	potential				Version: 2.
											Gem energiberegning:
System 1:	FOF - S	calar	1								Ck Ck
	Class	[kW]	-	[Hz]	[V]	[A]	PF	[rpm]	Remtræk?	Gear?	Kendt arbejdspunkt:
	IE1 Motor	18,50	4 poles	50	400	35,60	0,84	1450	Ja	Nej	P1-3,00 [kW]
		1500	ה								
system 2:	beigique PH	1500 rpm	J		D.C.						
	Class	[KVV]		[HZ]	[V]		PF	[rpm]	Remtræk?	Gear?	Kendt arbejdspunkt:
	IE3 Motor I	15.00			400	I 0.00 I	0,00	1500	Ja	Nei	P4 - 1,11 [kW]
Varighed	lskurve (f	ør/efte	r):					<u> </u>		fter system	
Varighed	lskurve (f	ør/efte	r):					· · · · · · · · · · · · · · · · · · ·		Efter system	
Varighed	lskurve (f	ør/efte	r):					· · · · · · · · · · · · · · · · · · ·		ifter system	igt energiforbrug
Varighed	lskurve (f	ør/efte	r):							fter system	igt energiforbrug r: 32200 kWh
Varighed 20,0 - 18,0 - 16,0 - 14,0 - 12,0 - 10,0 -	lskurve (f	ør/efte	r):							ifter system	igt energiforbrug r: 32200 kWh
Varighed 20,0 - 18,0 - 16,0 - 14,0 - 12,0 - 10,0 - 8,0 -	lskurve (f	ør/efte	r):							fter system	igt energiforbrug r: 32200 kWh rigt energiforbrug fter:
Varighed 20,0 - 18,0 - 16,0 - 14,0 - 12,0 - 10,0 - 8,0 - 6,0 -	Iskurve (f	ør/efte	r):							ifter system	igt energiforbrug r: 32200 kWh rigt energiforbrug te: 21476 kWh
Varighed 20,0 - 18,0 - 16,0 - 14,0 - 12,0 - 10,0 - 8,0 - 6,0 - 4,0 - 2,0 -	Iskurve (f	iør/efte	r):		1)		ifter system	igt energiforbrug 7: 32200 kWh rigt energiforbrug te: 21476 kWh rig besparelse:

I Figur 5.20 ses beregninger af elforbrug før og efter optimeringen af ventilationssystemet.

Figur 5.20. Beregninger af elforbrug før og efter

Som det ses, reduceres elforbruget fra 32.200 kWh/år til 21.451 kWh/år ved optimering af maskinsystemet. Besparelsen udgør, som det ses, 10.749 kWh/år, svarende til en reduktion på ca. 33 %.

I Figur 5.20 ses endvidere en række oplysninger om de to alternative systemer. Det ses endvidere at energiberegningen kan gemmes.

6 Eksempler på brug af værktøjet - trykluftsystem

Nedenfor ses et eksempel på brug af værktøjet. Eksemplet omhandler optimering af et trykluftsystem foretaget af en energirådgiver.

Energirådgiveren har målt og registreret følgende:

- Flow
- Leveret tryk
- Effektoptag for motoren
- Motorens omdrejningstal (registreret via den angivne frekvens på frekvensomformeren)

6.1 Data for trykluftsystemet

Nedenfor ses energirådgiverens beskrivelse af de komponenter der indgår i trykluftsystemet. Foruden kompressoren indgår der en motor og en styringsenhed.

6.1.1 Kompressor

Kompressoren er en Ingersoll Rand Nirvana N55 – 55 kW frekvensreguleret kompressorer.

Figur 6.1. Trykluftkompressor

6.1.2 Motor

Motoren er en 2-polet 55 kW IE3 motor.

6.1.3 Styring

Der benyttes en frekvensomformer til ændring af motorens og kompressorens omdrejningstal.

6.2 Målinger og registreringer på trykluftsystemet

Kompressoren er tilkoblet en styring, hvor der opsamles data for trykluftforbrug/produktion og tryk. I figur 6.2 ses skærmvisninger fra styringen fra den 13. november 2017. Som det ses varier flowet mellem ca. 4 og 10,2 m³/min mens trykket stort set ligger konstant på 6,8 bar.

Figur 6.2. Skærmvisning fra styrings-pc

Data for flow og tryk er hentet ud styringssystemet. I figur 6.3 ses sammenhængen mellem flow og effektoptaget for kompressoren.

TEKNOLOGISK

Figur 6.3. Sammenhængen mellem flow og effektoptaget for kompressoren

6.3 Inddatering i programmet

I Figur 6.4 vælges først et momentprofil. Da der er tale om en trykluftkompressor vælges en applikation med konstant moment.

Figur 6.4. Valg af momentprofil

Herefter indtastes der, som det ses i Figur 6.5 og Figur 6.6, data for motoren og styringen.

Figur 6.5. Data for motor

I Figur 6.7 indtastes et kendt arbejdspunkt som er effektoptaget og omdrejningstallet.

2							×
Indtas	st kendt	arbejdspunł	ct:				
	P 4 O	Last	P ₃	Transmission	P ₂ O	Motor & Omformer	P ₁
Indta arbe	nst jdspunkt	Hastighed P3: Arbejc Effekt () Arbej Hasti ()	2920 Ispunkt [kW]: 66,90 Ispunkt ghed [rpn 2920	Hastighed P2:	2920 218,8 Beregnet mome	Calc. master: P1 - Optagen eff nt [Nm]	ekt Ok

Figur 6.7. Indtastning af kendt arbejdspunkt

Til slut indtastes, som det ses i Figur 6.8, data for kompressoren.

	23
Ventilator Vandpumpe Hydraulikpumpe Trykluft Kølekompressor Anden motordrift	
$P_{4} = p_{1} \cdot v_{1} \cdot k \cdot \left[\left(\frac{p_{2}}{p_{1}} \right)^{\frac{1}{k}} - 1 \right] [kW]$ $Tilgangstryk [bar] Afgangstryk [bar] Afgangstryk [bar] Affast \overrightarrow{q} 1 \qquad \overrightarrow{q} 6,78 \qquad \overrightarrow{OFF} Flow [m3/s] Adiabat k \overrightarrow{q} 0,17 \qquad \overrightarrow{q} 1,4 \qquad 3,5$	
Last profil D Beregn P3 Indfør data	
Udgangseffekt [kW]: Virkningsgrad [%]: P3 - Hast [rpm]: Indgangseffekt [kW]: 43,30 70,37 2927 61,54 OK	
Eta & hastighed beregnes fra last profil	

Figur 6.8. Indtastning af data for kompressor i applikationsberegner

6.4 Output fra programmet

I Figur 6.9 ses output fra programmet. Virkningsgraden for kompressoren er beregnet til 70,4 %.

Figur 6.9 – Output fra programmet – før gennemførelse af tiltag

2						_		Σ
	Indf	før op ti	l 12 arb	ejdspunk	ter:			
	Flow	Hast.	P1	Hast. Lineær	P1 Lineær	Drev bereg P aksel	gning: Eta drev	
01	0,17	2920	66,9	2926,9	67,4	61,54	91,26	Hent fil
02	0,153	2634	60,3	2631,3	61,4	55,78	90,83	Gem fil
03	0,143	2462	58,9	2457,5	57,9	52,40	90,53	Slet tabel
04	0,133	2290	54,2	2283,6	54,3	49,02	90,19	
05	0,117	2004	49,9	2005,4	48,7	43,60	89,56	Mindst 2 arbejdspunkter OK?
06	0,108	1861	46,6	1849,0	45,5	40,55	89,13	
07	0,1	1718	43,3	1709,9	42,7	37,85	88,69	
08	0,09	1489	37,5	1536,0	39,1	34,46	88,06	
09	0,075	1288	33,1	1275,3	33,8	29,39	86,86	
10	0,067	1145	31,2	1136,2	31,0	26,68	86,06	
11	0	0	0	0,0	0,0	0,00	0,00	
12	0	0	0	0,0	0,0	0,00	0,00	
		Model (type Scalar			ок	Cancel	

Der er, som det ses i Figur 6.10, indtastet et lastprofil for kompressoren.

Figur 6.10. Lastprofil for kompressor

Hvis flowet herefter ændres fra 0,17 m³/s til 0,08 m³/s falder kompressorens virkningsgrad, som det ses i Figur 6.11, til ca. 65,6 %.

	3
Ventilator Vandpumpe Hydraulikpumpe Trykluft Kølekompressor Anden motordrift	
$P_4 = p_1 \cdot v_1 \cdot k \cdot \left[\left(\frac{p_2}{p_1} \right)^{\frac{1}{k}} - 1 \right] [kW]$ Tilgangstryk [bar] Afgangstryk [bar] Afgangstryk [bar] Affast OFF Flow [m3/s] Adiabat k	
Last profil D Beregn P3 Indfør data	
P4 - Belastning Udgangseffekt [kW]: Ny beregnet Virkningsgrad [%]: P3 - Hast [rpm]: P4 - Belastning Indgangseffekt [kW]: Brug last profil 20,38 65,57 1362 31,08 OK	
Eta & hastighed beregnes fra last profil	

Figur 6.11. Ændring af flow for kompressoren

Systemets totalvirkningsgrad er, som det ses i Figur 6.12 faldet til 57,2 %.

Figur 6.12. Systemets totalvirkningsgrad efter reduktion af flowet

Med applikationsberegneren er det muligt at få beregnet kompressorens virkningsgrad ved forskellige belastningsgrader.

Ved fuldlast er kompressorens virkningsgrad ca. 70,4 %. Dette vurderes at være noget lavere end hvad der kunne forventes. En kompressor i den størrelse burde havde en virkningsgrad på 77 – 78 %.

Besparelsespotentialet ved at udskifte kompressoren står dog ikke mål med den nødvendige investering.

7 Eksempler på brug af værktøjet - kølesystem

Nedenfor ses et eksempel på brug af værktøjet. Eksemplet omhandler optimering af et kølesystem foretaget af en energirådgiver.

Energirådgiveren har målt og registreret følgende:

- Fordampningstemperatur
- Kondenseringstemperatur
- Køleydelse
- Effektoptag for motoren

7.1 Data for kølesystemet

Nedenfor ses energirådgiverens beskrivelse af de komponenter der indgår i kølesystemet. Foruden kompressoren indgår der en motor og en styringsenhed.

7.1.1 Kølekompressor

Køleanlægget er opstillet i et kølekompressorrum i kælderen. Køleanlægget KK01 er en SABROE ChillPac112L, der er udrustet med en SMC112L stempelkompressor samt en vandkølet fordamper og kondensator. Uniten har en nominel kølekapacitet på 878 kW ved To,i/To,u: 12/7°C og Tk,i/Tk,u: 30/35°C.

Figur 7.1. Trykluftkompressor

7.1.2 **Motor**

Motoren er en 4-polet 200 kW IE2 motor.

7.1.3 **Styring**

Der benyttes cylinderudkobling til ændring af kompressorens køleydelse.

7.2 Målinger og registreringer på kølesystemet

Kompressoren er tilkoblet et CTS-anlæg, hvor der opsamles data for fordampnings- og kondenseringstemperaturer samt køleydelse og effektoptag for motoren. I figur 7.2 og 7.3 samt figur 7.4 og 7.5 ses opsamlede i CTS-anlægget.

Figur 7.2. Fordampnings- og kondenseringstemperatur den 5. september 2017

Figur 7.3. Køleydelse og effektoptag for kompressor den 5. september 2017

Figur 7.4. Fordampnings- og kondenseringstemperatur den 9. september 2017

Figur 7.5. Køleydelse og effektoptag for kompressor den 9. september 2017

I figur 7.6 er samhørende værdier for kompressorens køleydelse og effektoptag indtegnet. Der er som det ses en lineær sammenhæng mellem disse.

Figur 7.6. Effektoptag som funktion af køleydelse for kompressor

Der findes ikke målinger ved den nominelle køleydelse, men ved hjælp af figur 7.6 kan effektoptaget ved en køleydelse på 878 kW beregnes til ca. 205 kW.

For dampningstemperaturen ligger et sted mellem 0 og 2 °C mens kondenseringstemperaturen ligger et sted mellem 25 og 27 °C.

7.3 Inddatering i programmet

Data for kølekompressoren er indtastet i applikationsberegneren for kølekompressorer.

2	×
Ventilator Vandpumpe Hydraulikpumpe Trykluft Kølekompressor Anden motordrift	
$COP_{Carnot} = \frac{T_0 + 273.15}{T_k - T_0} \qquad P_{Carnot} = \frac{Q_0}{COP_{Carnot}} \qquad \begin{array}{c} Fordampnings \\ temperatur [°C] \\ 2 \\ temperatur [°C] \\ temperatur [°C] \\ 2 \\ temperatur [°C] \\ $	
P4 - Belastning Ny beregnet P4 - Belastning Udgangseffekt [kW]: Virkningsgrad [%]: P3 - Hast [rpm]: Indgangseffekt [kW]: 79,77 40,67 1450 196,16 OK	

Figur 7.7. Indtastning af data for kølekompressor i applikationsberegner

7.4 Output fra programmet

Figur 7.8. Systemvirkningsgrad for kølekompressor ved nominel køleydelse

Figur 7.9. Systemvirkningsgrad for kølekompressor ved 50 % af nominel køleydelse

8 Eksempler på brug af værktøjet - hydrauliksystem

Nedenfor ses et eksempel på brug af værktøjet. Eksemplet omhandler optimering af et hydrauliksystem foretaget af en energirådgiver.

Energirådgiveren har målt og registreret følgende:

- Flow
- Tryk
- Effektoptag for motoren

8.1 Data for hydrauliksystemet

Nedenfor ses energirådgiverens beskrivelse af de komponenter der indgår i hydrauliksystemet. Foruden pumpen indgår der en motor og en styringsenhed.

8.1.1 Hydraulikpumpe

Pumpen er en Bosch Rexroth A4VS0-250 DR aksialstempelpumper med variabelt deplacement.

Figur 8.1. Trykluftkompressor

8.1.2 **Motor**

Motoren er en 4-polet 110 kW IE2 motor.

8.1.3 Styring

Der benyttes variabelt deplacement til ændring af pumpens flow.

8.2 Målinger og registreringer på hydrauliksystemet

I figur 8.2 og 8.3 ses beregnet flow samt målinger af tryk og effektoptag på pumpen.

Figur 8.2. Beregnet flow og målt tryk

Figur 8.3. Målt effektoptag

På figur 8.2 ses, at flowet varierer mellem 0 og 300 l/min. (maks.), mens trykket stor set er konstant på 155 bar.

På figur 8.3 ses, at effektoptaget varierer mellem 14 og 100 kW. De 14 kW er en grundbelastning, som er til stede selv ved et flow på 0 l/min.

I figur 8.4 ses driftsprofilet for hydraulikpumpen.

Pumpen har 6 cykler á 20 sekunder hvor den leverer ca. 276 l/min ved et tryk på 155 bar og 6 cykler á 9 sekunder hvor den leverer ca. 82 l/min ved et tryk på 155 bar.

Herefter kører den i 120 sekunder med et flow på 0 l/min ved et tryk på 155 bar.

Pumpen har derefter 4 cykler á 20 sekunder hvor den leverer ca. 276 l/min ved et tryk på 155 bar og 4 cykler á 9 sekunder hvor den leverer ca. 82 l/min ved et tryk på 155 bar.

Herefter kører den i 720 sekunder med et flow på 0 l/min ved et tryk på 155 bar.

Figur 8.4. Driftsprofil for hydraulikpumpe

8.3 Inddatering i programmet

Der er, som det ses i figur 8.5, indtastet et arbejdspunkt for pumpen i applikationsberegneren vedr. hydraulik. Ved det angivne flow (276 l/min) og tryk (155) er virkningsgraden for pumpen beregnet til ca. 87 %.

2	×
Ventilator Vandpumpe Hydraulikpumpe Trykluft Kølekompressor Anden motordrift	
$P_{4} = \frac{Q \cdot \Delta p}{600} [kW]$ Volumenstrøm Q [/min] Q [/min] Q [/min] Q [/min] Volumenstrøm Vo	
Adv. hydraulics calc	
P4 - Belastning Udgangseffekt [kW]: Ny beregnet Virkningsgrad [%]: P3 - Hast [rpm]: Indgangseffekt [kW]: 71,30 86,60 1450 82,33	

Figur 8.5. Indtastning af data for hydraulikpumpe i applikationsberegner

8.4 Output fra programmet

Systemets totalvirkningsgrad er, som det ses i figur 8.32, beregnet til 82 %.

Figur 8.6. Systemvirkningsgrad for hydraulikpumpe ved nominel ydelse

Avanceret beregning

Det er også muligt at foretage en mere avanceret beregning på hydraulikpumpen. Det kræver en beregning fra P4 mod P1.

Adv. hydraulics	01.vi		- □ >	×
Flow [l/min]	Tryk [bar]	Pumpestørrelse 250 √	Styrestrategi 2	
[% af max]	Trykmargin [bar]	Flowmax [m3/s] 0,00573958	inkl. margin [/min] inkl. margin [bar]	
Absolut Maxlow [l/min]	Absolut Maxtryk [bar]	Flowmax [l/min] 344,375	Udregnet hydraulisk Udregnet virkningsgrad Effekt [kW] for hydraulikpumpe 71,14 91,47	
Flowminimum v. Omdrejningsreg. [% af max]	Motor hastighed ind [rpm]		Motor hastighed for proces (rpm) 1450 Done	

Figur 8.7. Indtastning af deltaljerede data for hydraulikpumpe

P	\times
Ventilator Vandpumpe Hydraulikpumpe Trykluft Kølekompressor Anden motordrift	
$P_{4} = \frac{Q \cdot \Delta p}{600} [kW]$ Volumenstrøm Q [/min] Q [/min] Q [bar] Q [75,4 Q [155]	
Adv. hydraulics calc	
P4 - Belastning Udgangseffekt [kW]: Ny beregnet Virkningsgrad [%]: P3 - Hast [rpm]: P4 - Belastning Indgangseffekt [kW]: Brug last profil 71,14 91,47 1450 77,78	
Calc master = P4, Angiv Eta & hastighed	

Figur 8.8. Beregning af virkningsgrad for hydraulikpumpe

Figur 8.9. Systemoverblik

9 Ecodesign regulativerne for ventilatorer og vandpumper

Værktøjet er tilpasset til den eksisterende regulering af Ecodesign for ventilatorer og vandpumper således at brugeren bliver notificeret om overholdelse af krav er opfyldt.

9.1 Ecodesign for ventilatorer

I figur 9.1 ses, at der er indtastet data for en ventilator og en motor. Der er som det ses valgt en 4-polet 18,5 kW IE2 motor.

Figur 9.1. Systemoverblik
I figur 9.2 ses, at der er indtastet et driftspunkt for ventilatoren. Ventilatorens virkningsgrad er beregnet til 74,4 %, mens systemvirkningsgraden er beregnet 67,6 % (se figur 5.1).

	×
Ventilator Vandpumpe Hydraulikpumpe Trykluft Kølekompressor Anden motordrift	
$P_{hyd} = Q \begin{bmatrix} \frac{m^3}{s} \end{bmatrix} \cdot \Delta p \ [Pa]$	
Last profil A 12 faste punkter Indfør data	
P4 - Belastning Ny beregnet P4 - Belastning Udgangseffekt [kW]: Virkningsgrad [%]: P3 - Hast [rpm]: Indgangseffekt [kW]: 12,50 74,36 1450 16,81	

Figur 9.2. Indtast kendt arbejdspunkt for ventilator

I fanebladet "ECO-Design evaluation, er der valgt en centrifugalventilator med B-hjul og ventilatorhus og det er valgt, at trykket angivet i figur 9.2 er den totale trykstigning.

Ecodesign kravet til ventilatoren er, som det ses i figur 9.3, beregnet til 64,6 %, så den lever op til kravet.

Figur 9.3. Ecodesign krav til ventilatorer

9.2 Ecodesign for vandpumper

I figur 9.4 ses, at der er indtastet data for en vandpumpe	og en motor. Der er som det ses valgt
en 4-polet 18,5 kW IE2 motor.	

Figur 9.4. Systemoverblik

I figur 9.5 ses, at der er indtastet et driftspunkt for vandpumpen. Vandpumpens virkningsgrad er beregnet til 65,7 %, mens systemvirkningsgraden er beregnet 58,8 % (se figur 9.4).

Figur 9.5. Indtast kendt arbejdspunkt for vandpumpe I fanebladet "ECO-Design evaluation, er der valgt en ESOB-vandpumpe.

Ecodesign kravet til vandpumpen er, som det ses i figur 9.6, beregnet til 71,5 %, så den lever ikke op til kravet.

Figur 9.6. Ecodesign krav til vandpumper

10Beregning af besparelsespotentiale

Det er gjort muligt at udarbejde en baseline i form af en lille database, hvor det allerede udviklede tabelopslag om elforbrug og besparelser i maskinsystemer opgjort for udvalgte teknologier og brancher bliver overført til. Rådgiveren kan anvende det til en indledende kortlægning af en virksomhed og ved hjælp af systemoptimeringsværktøjet indlednings foretage et estimat over besparelsespotentialet i virksomheden. Herefter kan en grundigere måling af forbrug foregå på de steder det var vurderet at der var noget at komme efter. Værktøjet kan herefter igen anvendes for en mere nøjagtig beregning af potentialet på den enkelte applikation.

Figur 10.1. Opdeling af elforbrug på teknologier og besparelsespotentialer

11Udskrifts funktionaliteter

Der er endvidere foretaget en generel forbedring af værktøjets funktionaliteter, herunder:

- Mulighed for udskrift til printer
- Mulighed for at man kan gemme og indlæse tidligere beregninger
- Definition af en standardiseret slutrapport inkl. data fra energiberegneren
- Mulighed for "gem som" pdf, standardiseret slutrapport

Når man klikker på knappen "HTML Output", kan man generere en række rapporter, som ses i figurerne 11.2 til 11.7.

Figur 11.1. HTML output

MST-Tool main window

Figur 11.2. Systemoverblik

Application data:

Ventilator	Vandpumpe	[Hydraulkpumpe]	Trykluft Kølekompressor Anden motordrift Luftflow m3/n
	P _{hyd} = Q Last profil A 12 faste punkter	Indfør data	() 32000 Tryk (Pa) () 1000
P4 Udgan	- Belastning gseffekt [kW]:	Ny beregnet Virkningsgrad [%]:	P4 - Belastning P3 - Hast [rpm]: Indgangseffekt [kW]:
	8,89	62,83	840 14,15 ox

Figur 11.3. Data for applikation samt motor og transmission

Duty point data:

System setup		MST Version:	2.17.12	Date of data:	08-04-2019		
Kendt punkt plads	Aktuelt arbejdspunkt Effekt [kW]	Hastighed P3 [rpm]	Udveksling	Hastighed P2 [rpm]	Momentkurve	Load txt info	Effekt P3 [kW]
P1	18,50	840	1,500	1260	4	Pumper, ventilatorer etc.	14,15

Figur 11.4. Driftspunkt

Motor Systems Tool - Energy calculation System overbilk For situation Efter situation Energiberegner ECO-Design evaluation Evaluation of potential N Ok System 1: FOF - Scalar Class [KV] [H-2] [V] [A] PF [rpm] Remtrael? Gear? Kendt arbeijdspunkt: IE2 Motor 18,50 4 poles 50 400 34,86 0,84 1450 3a Nej P4 - 1,11 [kV] Class [kW] System 2: FOF - Scalar Class [kW] [H4] [V] [A] PF [rpm] Remtrael/2 IE2 Motor 18,50 4 poles 50 400 34,86 0,84 1450 3a Kendt arbejdspunkt: Nej Varighedskurve (før/efter): Efter system 18,0 16,0-14,0 Årligt energiforbrug 12,0 -5 kWh 10,0-8,0-Årligt energiforbrug Efter: 6,0-32284 kWh 4,0-Årlig besparelse: 7771 kWh 2,0 0,0zo 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 365 Dage

MST-Tool Energy calculation

Figur 11.5. Energiberegning

Before sit	uation:																					
Version & date																						
MST Version:	2.17.12	Date of data:	04-04-2019]]]		
Motor setup in	fo:																					
Connection	Class	Nom. power [kW]	Poles [-]	Frequency [Hz]	[V]		[A]	PF	[rpm]													
FOF - Scalar	IE2 Motor	18,50	4 poles	50	400		34,86	0,84	1450													
Calc master	JP4	1,11	L]][
Transmission i	nfo:																					
Er der transmission?	Rem ID	Mindste remskivediamet [mm]	er Udvekslings	forhold Vælg	rem type:	Antal rem	me Placerin mindste remskive	g af Indtast r remskiv [mm]	mindste /ediameter	Transn info:	nission	Gear pre	sent?	Select ty gear	ype of Shat	r nominal t speed 1]	Gear n shaft p [kW]	ominal ower	Gear udveks	ding	Jear f fak	tor Gear Eta nominal
Ja	ХРВ	100,000	1,2	Kilere	em smal idet	3,000	P3	63		XPB 1	00 1	Nej										
Duty points:																						
Before situation:		FOF - Scalar	IE2 Motor	18,50	4 pole	es	50	400	34,86		0,84	1	.450									
Par. A	Par. B	P4 [kW]	Eta load	P3 [kW]	P3 [rp	m]	Eta transmission	P2 [kW]	P2 [rpm	l]	Eta moto	r E	Eta VSE		P1 [kW]	Eta tot	al	Hours/y	ear	Days/yea	r kV	Vh/year
31700,000	1000,000	8,806	65,000	13,547	1740,	000	87,410	15,498	1450,00	10	100,000	8	7,131		17,787	49,504		1000,00	10	42,000	17	787,425
24000,000	540,000	3,600	65,000	5,538	1740,	000	85,986	6,441	1450,00	10	100,000	8	2,629		7,795	46,182		2000,00	0	83,000	15	590,427
16000,000	250,000	1,111	65,000	1,709	1740,	000	79,329	2,155	1450,00	10	100,000	6	64,541		3,339	33,280		2000,00	10	83,000	66	77,383

Figur 11.6. Før situation

After situation:

Version & d

MST Version:	2.17.12	Date of data:	04-04-2019															
Motor setup in	lo:																	
Connection	Class	Nom. power [kW]	Poles [-]	Frequency [Hz]	[V]	[A]	PF	[rpm]										
FOF - Scalar	IE2 Motor	18,50	4 poles	50	400	34,86	0,84	1450										
Calc master	P4	1,11																
Transmission i	ıfo:												2				1	
Er der transmission?	Rem ID	Mindste remskivediame [mm]	ter Udvekslings	forhold Vælg rer	m type: Antal res	nme Placerin remskiv	ig af Indtast : remskiv re [mm]	nindste ediameter	Transmission info:	Gear pi	resent? Se	lect type of ar	Gear nomina shaft speed [rpm]	l Gear n shaft p [kW]	ominal ower	Gear Idveksling	Gear f faktor	Gear Eta nominal
Ja	ХРВ	100,000	1,2	Kilerem fortande	smal t 3,000	P3	63		XPB 100	Nej								
Duty points:																		
After situation:		FOF - Scalar	IE2 Motor	18,50	4 poles	50	400	34,86	0,84		1450]			
Par. A	Par. B	P4 [kW]	Eta load	P3 [kW]	P3 [rpm]	Eta transmission	P2 [kW]	P2 [rpm] Eta mo	otor	Eta VSD	P1 [kW] Eta t	otal	Hours/ye	ar Days/y	ear kWh	/year
31700,000	1000,000	8,806	84,000	10,483	1740,000	87,309	12,007	1450,00	0 100,00	0	86,663	13,854	63,55	58	1000,000	42,000	1385	4,288
24000,000	540,000	3,600	84,000	4,286	1740,000	84,760	5,056	1450,00	0 100,00	0	79,877	6,330	56,8	71	2000,000	83,000	1266	0,202
16000,000	250,000	1,111	84,000	1,323	1740.000	78.015	1.696	1450.00	0 100.00	0	58 775	2.885	38.51	7	2000.000	83.000	5769	.496

Figur 11.7. Efter situation