

VIRTUAL GREENHOUSE™

TEST CHANGES BEFORE THEY ARE APPLIED Detailed analyses of plant production, climate and energy

Virtual Greenhouse™

Test changes before they are applied

Greenhouse technology develops fast, and there are many products and suppliers that claim to reduce energy consumption. Savings can be achieved by optimizing the climate set points, but even larger savings are possible by installing some of the newest equipment. In the Virtual Greenhouse, new installations are simulated, and savings are documented.

- Simulate your greenhouse environment and view how different suggestions to optimize the greenhouse construction and adding equipment, such as screens and lighting, affects energy consumption, climate, climate set points, and plant production.
- Print out a report showing the effects on energy consumption, plant climate, and plant production?

Import your climate data from InfoGrow 2.0[™] and make detailed analysis of the production performance and test changes you might want to implement. You can even analyze your data and find energy hot spots with a very high use of energy and test different solutions to avoid them.

	Unit		HPS	LED	Difference	Percent
Greenhouse area	m ⁻²		10,400	10,400	0	0.0
Total use of energy	MWh Year ⁻¹		4,937	4,854	-83	-1.7
Energy for heating	MWh Year ⁻¹		2,663	3,262	599	22.5
Energy for artificial light	MWh Year ⁻¹	I	2,274	1,592	-682	-30.0
Energy removed by water vapor (ventilation etc)	MWh Year ⁻¹		-197	-119	77	-39.4
Net Photosynthesis	g m ⁻²		1,071	1,011	-60	-5.6
Light Use Efficency	mg CO2 J ⁻¹		0.0149	0.0149	0.0000	0.1
Total energy used to produce 1 kg dry plant material Heating energy used to produce	MW kg ⁻¹	25,000	426	450	25	5.9
1 kg dry plant material	MW kg ⁻¹					
Light energy used to produce 1 kg dry plant material	MW kg ⁻¹	20,000	~			
Above: Main results from simulation Right: Use of energy for HPS LED lighting.	and	2 mergiforbrug, Wh m.2 Energiforbrug, Wh m.2 10'000	~			
		5,000				
			jan feb n	uar apr maj	jun jul aug	sep okt nov

Virtual Greenhouse - Overview

3100
VU

1. Input			2. Simulation	
Define the physic of your physic greenhouse set (Geography, siz screens, coverin lighting, CO ₂ , he pipes, etc.)	ical al sup e, bg, eat Define t str (Temp humidit light, CC	he climate ategy perature, y, artificial 0 ₂ , screens, etc.)	Virtual Greenhouse simulates and compare how your defined greenhouse setup will perform.	
Weather data (Use weather data more than 210 locations or use y own weather dat	a for Data a for prod 0 (Use data your own pr ta)	a from luction a from your roduction		
3. Results				
Energy consumption heat, light	Plant production Photosynthesis	Hourly dat Climate and production	Resource efficiencydEnergy usecompared to production	
4. Energy and growth	analysis			
Strategic	decisions	Analyz	ze your production	
What happens if you change climate strategy or hardware setup?		Find situations where it is possible to change strategy and optimize production or resource efficiency.		
5. Reports				

Make reports that documents your production and changes.

6. Calculated parameters

Crop:	Photosynthesis, transpiration, and canopy temperature.
Climate:	Temperature. Humidity, Light, and CO_2 at plant height in the
•	greenhouse
Efficiency:	Light Use Efficiency, Energy use efficiency

Danish Technological Institute

Danish Technological Institute is a leading research and technology company. We have 110 years of history, more than 10.000 clients and export to more than 65 countries.

We help our customers convert the newest knowledge and technology into value. We are experts in production, materials, life science, business, energy technology, meat research and more.

Center for Plant Technology

The Center for Plant Technology keep the plant in focus. Our expertise concerns optimizing growth, production and utilization of plants and plant-based bio-resources. We work with optimized plant production, plant breeding and biotechnology, high value bio compounds, plant health and diseases as well as cultivation technology for plants and algae. We offer everything from development of novel plants in our biotechnological service laboratory to field trials, where we test new varieties.

Contact: Jesper Mazanti Aaslyng Scientific Manager, Plant Technology +45 72 20 34 44 ieaa@dti.dk

