

Engine- and emission reduction technology

- Now and in the future

17 March 2021

Dorthe Jacobsen
Engine Process Development
17 March 2021

Agenda

- 1 Our business in a global context
- **2** Future fuels
 - MAN B&W Two-stroke Multi fuel engines
- 3 Drivers for change
- Future emission regulation in marine

Our business in a global context

Our Business in a Global Context

Paris Agreement

UN Sustainable Development Goals

IMO Initial GHG Strategy (13 April 2018):

Goals for International Shipping:

- Reduction of CO₂ per transport work: min. 40% by 2020 towards min. 70% in 2050*
- GHG emissions to peak as soon as possible
- Reduction the **total annual GHG** emissions by min. 50% by 2050*

*) Compared to 2008

MAN Energy Solutions

Our marine engines for large ships ≈ 1.5 % of world's CO₂

We take responsiblity to reduce climate impact!

Focus Areas – 2030 / 2050

Focus -> 2030

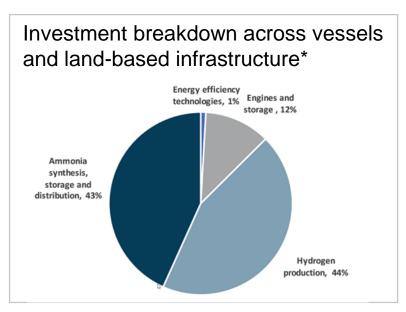
- Implemention of energy efficient technologies
- Further develop fuel flexible engines

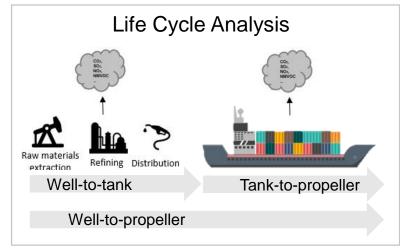
Focus -> 2050

Implementation of net-zero carbon fuels

Fuel Type	MAN ES 2-Stroke	MAN ES 4-Stroke
Diesel/ Heavy fuel	X	X
LNG	X	X
LEG (Ethane)	X	
Methanol	X	(*)
LPG	X	(*)
Biofuels	X	X
Ammonia (NH ₃)	(X)	(*)
Hydrogen		(*)

(X): Under development. Product: 2024

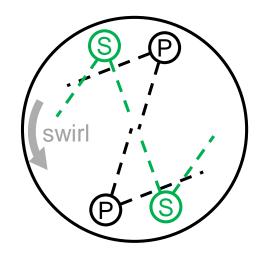

(*): R&D testing


The way to zero carbon shipping

At least 50% GHG reduction in 2050 requires:

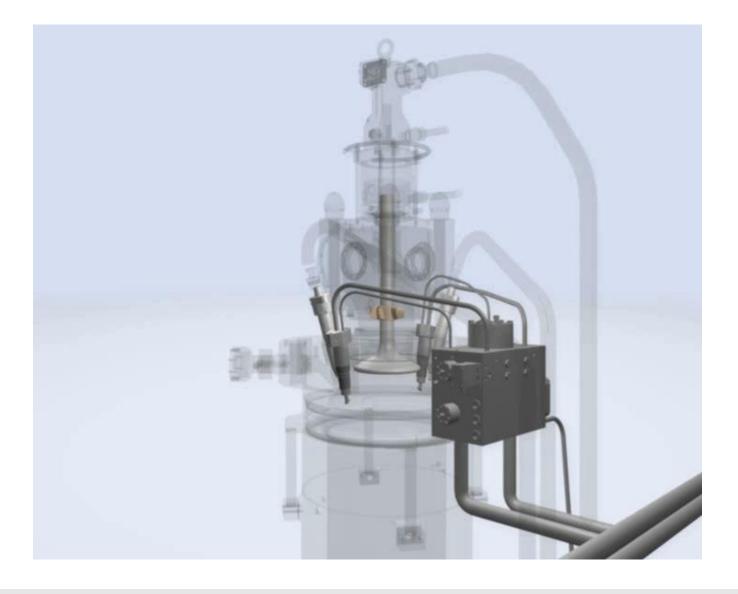
- Drivers (regulatory and/or economical)
- Major investments in energy/fuel production (upstream)
- Funding: Research, development and demonstration
- Cross-sectoral cooporation projects
- LCA approach to ensure net-GHG reduction
- Implementation of new fuels to start by 2030
 - preferably sooner

Work should start now - and we all have our roles

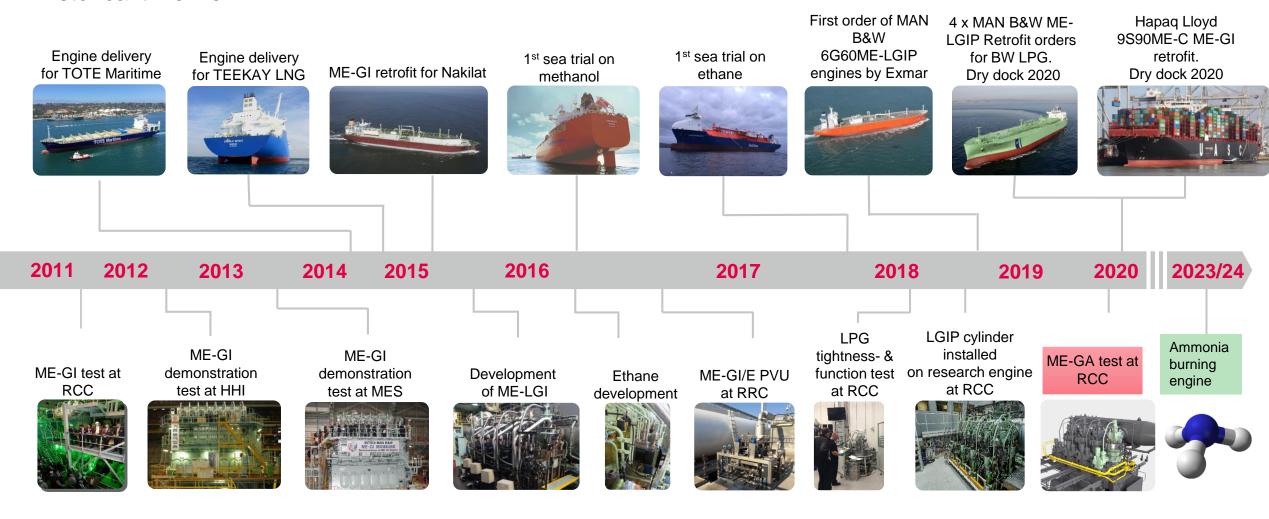

^{*)} Getting to Zero Coalition: https://www.globalmaritimeforum.org/news/the-scale-of-investment-needed-to-decarbonize-international-shipping/

MAN B&W two-stroke - multi fuel engines

Dual fuel engines



Engines capable of operating on conventional HFO / Diesel and an additional fuel through a separate fuel injection system.


(P) Diesel injector for pilot injection

Second fuel injector

MAN B&W Two-Stroke – Multi fuel Engines

Historical timeline

MAN Energy Solutions Public Dorthe Jacobsen - Engines and emissions

9

MAN B&W engines for different fuels

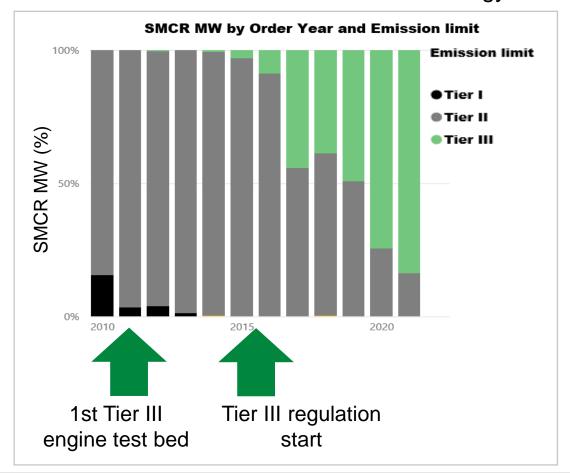
Modular design enables extensive retrofit options, and MAN Energy Solutions future proof your investment

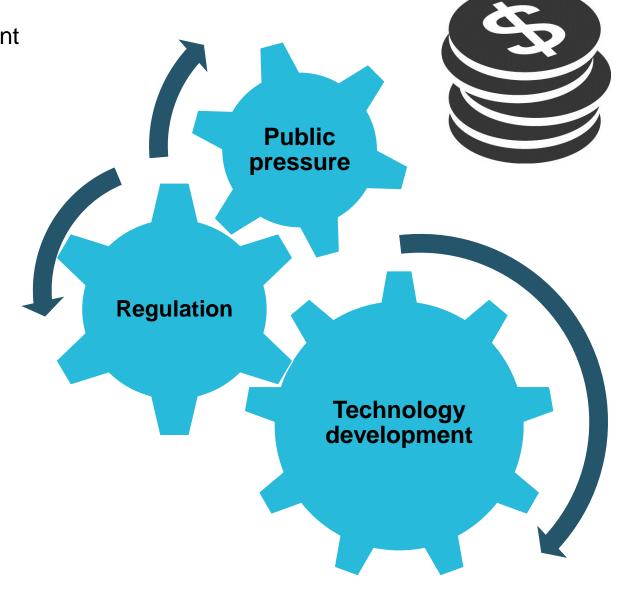
Fuel types	МС	ME-B	ME-C	ME-GI	ME-GA*	ME-GIE	ME-LGIM	ME-LGIP
0-0.50% S VLSFO	Design	Design	Design	Design	Design	Design	Design	Design
High-S HSHFO	Design	Design	Design	Design	Design	Design	Design	Design
LNG	-	-	Retrofit**	Design	Design	Design	Retrofit**	Retrofit**
LEG (Ethan)	-	-	Retrofit**	Retrofit**	-	Design	Retrofit**	Retrofit**
Methanol / Ethanol	-	-	Retrofit**	Retrofit**	-	Retrofit**	Design	Retrofit**
LPG	-	-	Retrofit**	Retrofit**	-	Retrofit**	Retrofit**	Design
Biofuels	Design	Design	Design	Design	Design	Design	Design	Design
Ammonia***	-	-	(Retrofit**)	(Retrofit**)	-	(Retrofit**)	(Retrofit**)	(Retrofit**)

For description of MAN ES 2-stroke engine types: https://marine.man-es.com/two-stroke/2-stroke-engines/overview

^{*}Otto-cycle gas engine.

^{**}Only one second fuel per retrofit.


^{***} Ammonia burning engine development started.


Drivers for change

Drivers for change

Public pressure + Regulation + Technology development

Market introduction: NOx reduction technology

Marine fuels: <u>2021</u> -> 2030 -> 2050

Green: Good Red: Major challenge

Current status for different fuel types

Fuel Type	Fuel Price production	Price A	Availability	Competences in the marine industry	Regulation	Safety		Environment		
prod						Toxicity Flamability		GHG		NOx, PM,
								Fuel production	On the ship	SOx, BC
0.10%S ULSFO	Fossil									
	Bio									
	PtX									
0.50 %S VLSFO	Fossil									
	Bio									
	PtX									
High-S Heavy fuel	Fossil									
LNG	Fossil									
	Bio									
	PtX									
Methanol	Fossil									
	Bio									
	PtX									
LEG (Ethane)	Fossil									
LPG	Fossil									
Ammonia (NH ₃)	Fossil									
	Bio									
	PtX									
Hydrogen	Fossil									
- -	Bio									
	PtX									

Future regulation in marine

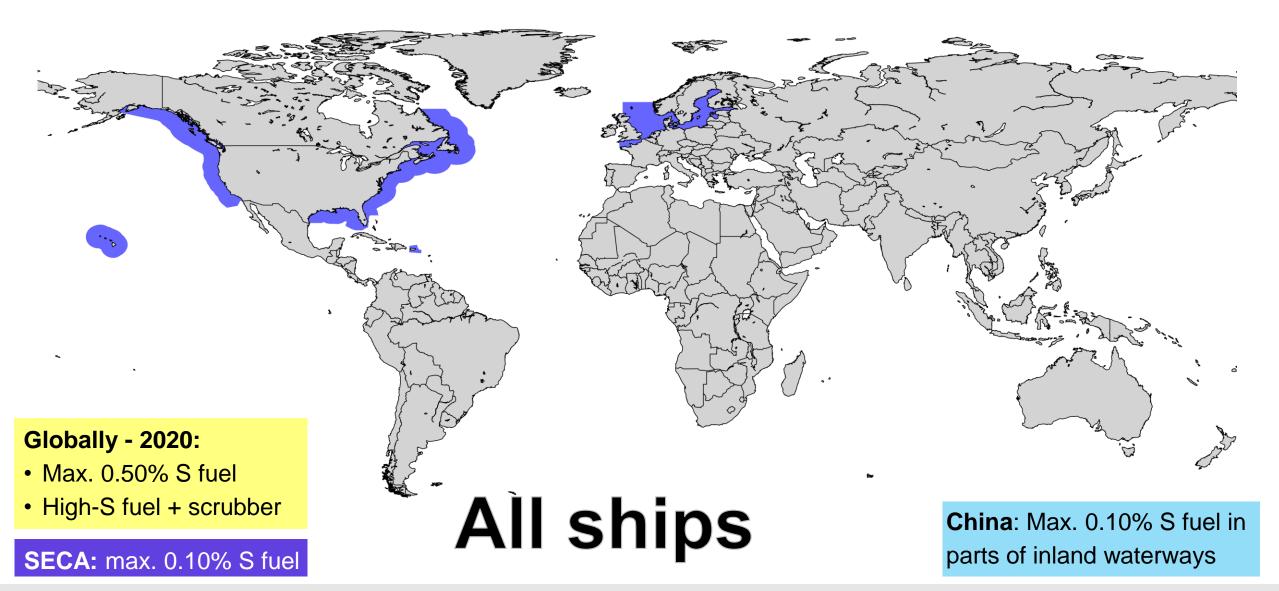
What is Air Pollution?

Air Pollution

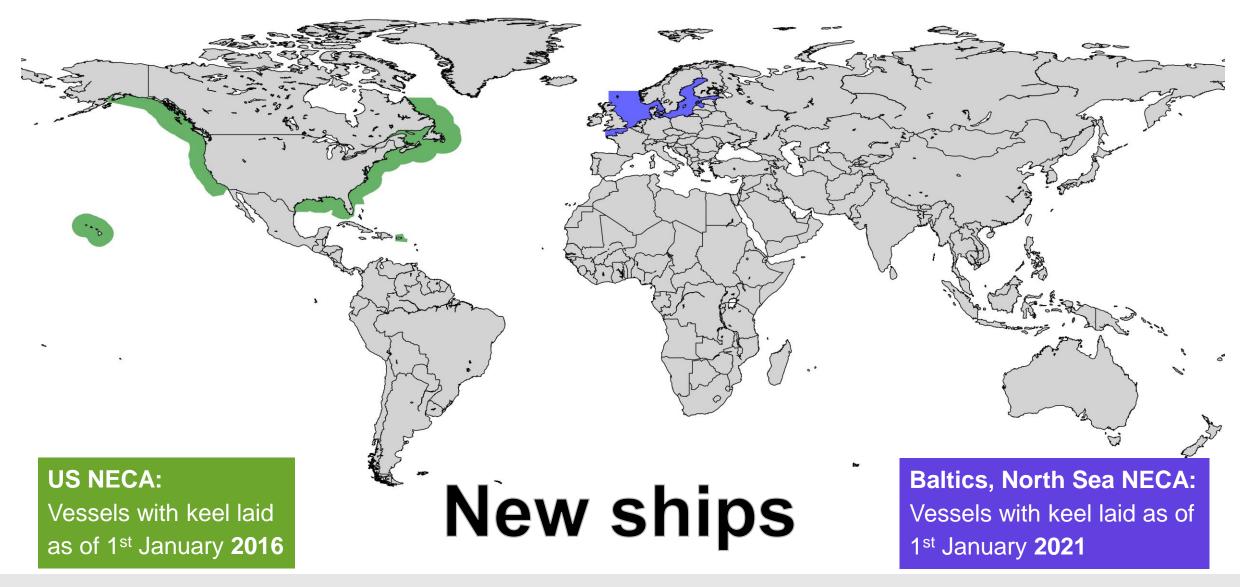
Affects human health and environment

Particulate Matter (PM) Nitrogen Oxides (NOx) Sulphur Oxides (SOx)

Atmospheric chemistry


Green House Gases Contributes to global warming

 CO_2 N_2O Methane (CH₄) Fluorinated gases


Short lived climate forcers

Black carbon (BC) Ozone

SOx Emission Controlled Areas (SECA)

NOx Emission Controlled Areas (NECA)

IMO NO_x regulation

NOx limits

For two stroke engines

Tier II

14.4 g/kWh (cycle)

Tier III

- 3.4 g/kWh (cycle)
- 5.1 g/kWh (Not to Exceed)

NOx Tier III technology overview

Fuel types

	Technology				
Fuel type	EGR	HP-SCR	LP-SCR	LGIM-W	PIWIF*
ULSFO-DM					
ULSFO-RM					
VLSFO					
HS-HFO					
LNG (ME-GI)					
LNG (ME-GA)					
МеОН					
Ethane					
LPG					
NH ₃					

^{*} Under development

Possible Future Regulation of Air Emissions

Trends pointing towards stricter regulation

Concern about poor air quality

- Poor air quality impacts human health and the environment
- Shipping contributes to air pollution in ports/coastal areas

Technological possibilities for further reduction

New technology / fuels offers possibilities for further reduction of emissions

Focus "real life emissions"

- Automotive sector is facing regulation of "real driving emissions" of NOx
- Continuous emission monitoring applied in other sectors

Possible Future Regulation of Air Emissions

A look in the crystal ball...

Currently, IMO is focusing on GHG discussions

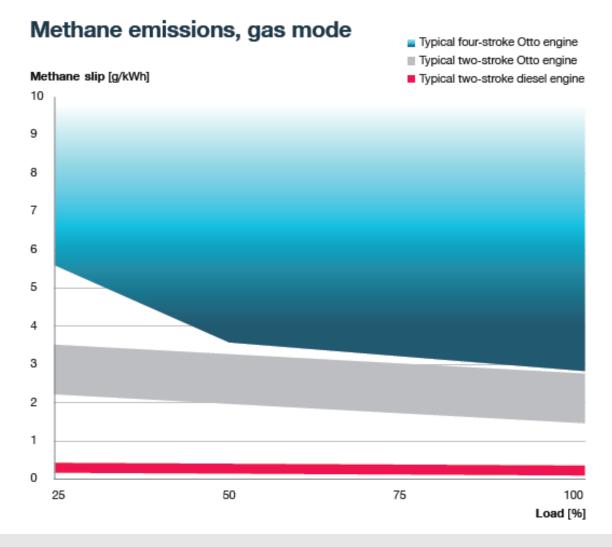
New IMO regulation of SOx, NOx, PM/BC not likely in a \approx 5 year time frame

Issues that IMO may address in a ≈ 5 year time frame

- Methane slip
- $-(?N_2O?)$
- Ammonia slip
- Continuous monitoring of NOx

EU is considering local regulation

- New SOx (NOx) ECA's in the Mediterranean
- Local restriction of most polluting ships (in ports)
- Promotion of shore-side electricity



Methane (CH₄) slip

https://www.man-es.com/marine/campaigns/methane-slip

MAN Energy Solutions Public

CH₄ slip strategy for MAN ES two-stroke gas engines

Operators choice

ME-GI engine

• CH₄ slip: 0.25 g/kWh

ME-GA engine

CH₄ slip: 2.5 g/kWh

Expected methane slip for ME-GI and ME-GA engines

	Methane slip [g/kWh]				
Load [%]	ME-GI	ME-GA			
100	0.20	2.00			
75	0.23	2.25			
50	0.25	2.50			
25	0.28	2.75			
0	0.30	3.00			

These figures are guaranteed with a tolerance:

ME-GI: +/-0.1 g/kWh


ME-GA: +/-1.5 g/kWh

Challenges for operation on NH₃

Engine designer perspective

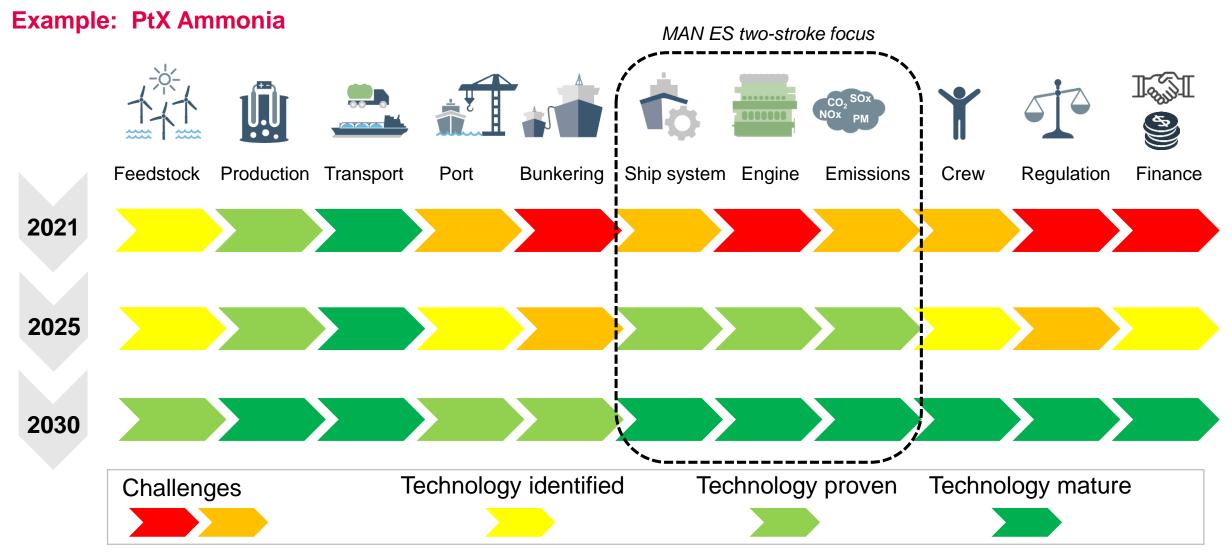
Combustion chamber:

- Combustion:
 - Dual fuel
 - Pilot fuel type, amount?
- Cylinder condition
- Lube oil

Emissions:

- NH₃ slip
- -NOx
- $-N_{2}O$?

Fuel system:


- No leak
- Seal
- Lubricate
- Suitable materials
- Bigger

NH₃ characterisics

- Safety: Toxic
- Smelly
- Volatile
- Degreaser
- Very low viscosity
- Low energy density
- Difficult to ignite
- Aggresive to materials:
 - Elastomers
 - Metals:
 - SCC
 - General corrosion

Possible implementation pathway for a new marine fuel

Based on framework developed by Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

Future in the making

Thankyou very much

Disclaimer:

All data provided in this document is non-binding.

This data serves informational purposes only and is especially not guaranteed in any way. Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.

Dorthe Jacobsen
Engine Process Development