

Focus on the control and simulation setup

Appendix B:

Description of the

OPSYS test rig

software

 –

Danish Technological Institute

Title:
Appendix 3: Description of the OPSYS test rig at Teknologisk Institut

Prepared for:
EUDP

Prepared by:

Danish Technological Institute

Teknologiparken
Kongsvang Allé 29
8000 Aarhus C
Refrigeration and Heat Pump Technology

March 2023
Author: Troels Stevns Pedersen

Danish Technological Institute

3

Table of Contents

1. Introduction .. 4

2. Control and communication setup .. 4

3. Hardware Components ... 5

3.1. Router .. 5

3.2. SIP .. 5

3.3. Trend (IQ4E)... 5

3.4. PreHeat gateway ... 5

3.5. PC ... 5

4. Software components .. 6

4.1. Python ... 6

4.2. Modbus server... 6

4.2.1. Modbus clients (controller and simulation) ... 7

4.3. House simulation ... 8

4.4. Controller ... 9

4.5. SIP .. 9

4.6. Trend / CTS963 ..10

4.7. The simulation pc ...10

4.7.1. Python files ..10

5. Test procedure ...12

5.1. Start-up procedure ...12

5.1.1. Pre-test procedure ..12

6. List of known issues ..12

7. Data processing scripts ...13

8. Guide on how to operate the OPSYS 2 test rig ..14

8.1. Modbus automatic execution in windows task schedule................................14

8.2. Start test ...16

8.3. Analysis of test results ..16

Appendix 1 Quick guide on how to operate the OPSYS test rig 12

Danish Technological Institute

4

1. Introduction

The purpose of this document is to disseminate knowledge regarding the test rig used in

the project “P2003908_Optimering af gulvvarme og vp systemer” and “P200618_OPSYS

2,0”, hereafter referred to as OPSYS.

The document is an update of the documentation made in the original Opsys project.

2. Control and communication setup

This section provides a description of the control and communication setup for the test rig.

Concerning control, communication and data acquisition, the test setup comprises of four

different entities.

1. The Simulation pc

2. The SIP

3. The Trend controllers

4. Router

Figure 1: Communication and data acquisition setup

The four entities are all depicted in Figure 1, which illustrates the communication and data

acquisition setup. The colors of the lines indicate the type of communication, (orange) LAN

connection, (red) Trend Protocol, (purple) Internet communication and (blue) Individual

sensor signals.

Danish Technological Institute

5

3. Hardware Components

This section lists and describes the hardware components, which supports the communi-

cation and software infrastructure.

 IP-address Hostname

Router 192.168.0.1

SIP 192.168.0.56 SIP

Trend

(IQ4E)

192.168.0.54 TREND_0B_C4_84

PreHeat

Gateway

PC 192.168.0.52

De ovenstående IP adresser skal følges, ellers opstår der fejl i kommunikationen.

3.1. Router

The 4G router handles the communication to the internet and between the nodes on the

local network.

3.2. SIP

The task of the SIP is to create a Modbus interface between the Python code running in

the Simulation pc and the Trend controllers. The SIP acts as a ModbusTcp client, and it

ensures that data signals from the Trend controllers are written into the data store main-

tained by the Modbus server. In addition, the SIP also ensures that data is transferred from

the datastore of the Modbus server to the Trend controllers. The mapping between the

Modbus addresses and the Trend controller input and output is configured using the web

based configuration tool on the SIP.

3.3. Trend (IQ4E)

Most of the dynamic equipment is connected to the Trend. Whereby control algorithms of

valves and pumps is done here, but received information from PC by what should be per-

fomed.

3.4. PreHeat gateway

Gateway from NeoGrid which can provide information regarding electricity price and also

weather forecast to tell if there might be a big PV production or not. Only used for temper-

ature reading at the testrig, DHW relays and stop signal for HP are also connected but not

working stable.

3.5. PC

The computer where modbus server is running, setting the base for interconnection be-

tween all the different components. Further is the control and simulation of the OPSYS rig

itself also executed and logged from here.

Danish Technological Institute

6

4. Software components

This section covers sub-processes which are executed to carry out simulation on the OPSYS

test rig.

Python is used as the general test environment to handle simulation and controlling test

rig, so first are the required environment packages defined. And then afterwards is the

software presented more detailed; Modbus, Simulation, Controller & Sip.

4.1. Python

Following packages are needed to have installed in the python environment at which eve-

rything is executed:

Package Link

Scipy (1.5.2)

Matplotlib

pyfmi (2.8.1) https://anaconda.org/conda-forge/pyfmi

pandas

(1.1.3)

https://anaconda.org/conda-forge/pandas

Gurobi (9.0.3)

cvxpy (1.1.6) https://www.cvxpy.org/install/index.html

Nose (1.3.7)

neurolab

(0.3.5)

https://pypi.org/project/neurolab/

xlsxwriter

(1.3.7)

https://anaconda.org/conda-forge/xlsxwriter

Pymodbus

(2.3.0)

https://anaconda.org/conda-forge/pymodbus

https://github.com/riptideio/pymodbus/releases/tag/v1.3.0rc2

4.2. Modbus server

The Modbus server handles the communication between the simulation, controller and SIP.

Hardware: OPSYS PC

Folder: ..\Opsys\test\

Files: run_modbus_server.bat, modbus_server.py

Dependencies: Python 3.7, pymodbus 2.3.0, modbus_config_vx_y.csv

• The Modbus server has been configured to start when the PC turns on. This is done

using the Task Scheduler in Windows, see appendix for configuring this. It has to

be updated when new pc password is set.

• Alternatively, the run_modbus_server.bat can be executed.

• The Modbus server is hosted on the standard modbus port 502.

Danish Technological Institute

7

4.2.1. Modbus clients (controller and simulation)

The three Modbus clients are the simulation, controller and SIP there is exchanging infor-

mation by the modbus server. This section is focusing with the simulation and controller

interface. The SIP is handled in Section 4.5

The base class for handling the interface to the Modbus is called OpsysModbusInterface.

This class is inherited by both classes: ModbusLead (simulation) and ModbusFollower

(controller). The reason for calling the classes lead and follower is explained further later

in this section.

Figure 2 shows the connection diagram for the modbus interface used by the simulation
and controller.

The file, named modbus_config_vx_y.csv, contains the description of the interface to

the sip. These are the registers which the simulation and controller need to read and write

to, for communication with the test-rig. The first column is the name used by the sip, the

second is the register and the third is whether is for reading or writing. In this setup no

two-direction registers are used, a register is either for writing or reading when communi-

cating with the SIP.

The main information flows on the modbus, are seen in Figure 3. Signal names in the

diagram reflects the names given in Trend.

Figure 3: Main information flows on modbus

In this version of the test-rig infrastructure the simulation has been separated from the

controller. This is done to introduce a certain level of authenticity. Had the house been a

house and not a simulation, the controller would be a stand-alone program, hence it has

been separated in the test-rig. This of course creates a need for proper timing.

Danish Technological Institute

8

Figure 4 illustration of communication between the follower and lead

Requirements for communication between simulation and controller:

• The software should not crash due to short term network problems.

• The simulation leads by publishing the simulation time on the Modbus.

• The controller follows according to simulation time.

4.3. House simulation

The house simulation provides the energy demand for the test-rig.

FMU Folder: ..\Opsys\data\input\fmu\

Simulation Folder: ..\Opsys\test\

Files: fmu_full_test.py, fmu_full_test_config.py

Dependencies:

4 complete houses [(Opsys or Original) x (1970 or 2010)] have earlier in OPSYS 1 been

modelled in Dymola and exported as an FMU, as can be seen as a black box with required

input values and then gives output values;

Input Output

T_forward T_room1

V_FLOW_Z1_1 T_room2

V_FLOW_Z1_2 T_room3

V_FLOW_Z2 T_room4

Danish Technological Institute

9

V_FLOW_Z3 T_return1

V_FLOW_Z4 T_return2

 T_return3

 T_return4

Settings to the FMU model can be adjusted in the config python script.

4.4. Controller

The controller adjusts the test rig to meet the heating demands the house simulation re-

quires.

Folder: ..\Opsys\test\

Files: Ctrl_3.py, fmu_full_test_config.py

Dependencies:

Mostly all control is done from Ctrl_3.py, DHW, PV and battery control has been imple-

mented here aswell.

The battery model is stored in battery_milp.py, which is an Mixed-Integer Linear Problem.

Data from PV panels are generated in the PV model stored under input files and generators.

4.5. SIP

The task of the SIP is to create a Modbus interface between the Python code running in

the Simulation pc and the Trend controllers. The SIP acts as a ModbusTcp client, and it

ensures that data signals from the Trend controllers are written into the data store main-

tained by the Modbus server running in Python on the Simulation pc. In addition, the SIP

also ensures that data is transferred from the datastore of the Modbus server to the Trend

controllers. The mapping between the Modbus addresses and the Trend controller input

and output is configured using the web based configuration tool on the SIP.

The configuration consist of two highly important tabs: Map points and vIQ. Map points is

used to configure which Modbus registers the different signals are mapped to.

Figure 5 shows the Map Points tab in the SIP configuration page. It is important that the
IP-address seen in the upper left corner match the IP of the Modbus server.

Danish Technological Institute

10

In the tab vIQ, it is possible to see an overview of the connected modules. It is also possible

to see the live values coming from the controller, simulation and test-rig. This property is

useful in case one needs to debug the system. The sub-tabs of interest are Sensors and

Knobs.

4.6. Trend / CTS963

The task of the Trend controllers is to provide the low-level controls of all the electronic

valves on the test rig along with the logging of all the relevant measurements and set point

for the various control loops. In addition, the Trend controllers provides an interface to the

heat pump by presenting five inputs and five outputs that can be used for future improve-

ments of the test rig setup. One of the outputs from the Trend controllers is currently being

used to set the ambient temperature for the heat pump and thereby indirectly controlling

the forward temperature of the heat pump.

CTS963 is the computer software from which the Trend system is directly monitored, and

user can define if specific values should be automatic adjusted by the controller or set a

fixed value the user define.

4.7. The simulation pc

Figure 1 shows that the Simulation pc is running two different tasks, which are:

1. Executing the python code which handles the following tasks:

a. Running the simulation of the house

b. Running the high-level control algorithms

c. Running the Modbus server to enable communication with the Trend con-

trollers through the SIP Modbus interface box and communication with neo-

grid box.

d. Data logging are saved to .pkl files, multiple pkl files are saved to differen-

tiate the data and not have one big file. Pkl files are saved to data/out-

put/fmu_full_test_######## where the last part is the time and date

when simulation was started.

2. Optional: Running the CTS 963 software, which handles the following tasks

a. Providing GUI for the Trend controllers and thereby an interface to the test

rig

b. Data logging the Trend controllers in an internally used database

c. Data logging each measurement point in a separate csv file. Files are saved

in “C:\Log data”. Files are only updated when CTS963 is running.

d. The needed data from trend are communicated to modbus server and save

to the pkl files earlier mentioned. This has been done in order to ease the

data analysis afterwards with all data in one place.

4.7.1. Python files

The python code is split up into five files and some sub modules:

1. Run_modbus_server.py

a. Main file used when making tests on the test rig hardware. To start the

modbus server.

Danish Technological Institute

11

b. Uses class/function descriptions located in the other python files.

c. The following configuration parameters can be changed in this file:

i. IP = '192.168.0.52' #ip address of the host computer

ii. PORT = 502 #Port modbus server is listening on

2. fmu_full_test_config.py

a. Configuration file for both the simulation and controller.

b. The following configuration parameters can be changed in this file:

i. Simulation settings: Sample time, stop time

ii. File and Folder, output folders and name

iii. Initial values for forward temperature and flows

iv. FMU options, among many the FMU model to use

v. Real time

vi. Controller, number of rooms, reference temperature, offset, scale

and ambient temperature.

vii. Modbus info

3. fmu_full_test.py

a. Reads data from the shared data store context.

b. Generates input vectors for the simulation model and propagates it

SIM_STEP seconds.

c. Sends room temperatures and water return temperatures to the Trend con-

trollers through the SIP.

d. The fmu file, e.g., named “OpSys_0Experiments_Test_0setup_0mod-

els_BR1970_0house_0simulation_0with_0data.fmu” contain the

model description for a 1970’s house which uses the weather and load data

profiles for a year located in “all_data_1970.txt” or

“all_data_noisy_BR10.txt” (values are added +/- 10% normally distrib-

uted random noise).

e. Note that the fmu should be generated as an fmu 2.0 using co-simulation

with Dymola solvers in order to function properly (standard CVODE solver

sometimes crashes and should be avoided – Dymola Radau-II solver is bet-

ter).

4. ctrl_3.py

a. Runs control algorithms, e.g., room flows and forward temperature.

b. Configuration is done in ‘fmu_full_test_config.py’.

c. Results from test rig are saved to .pkl files there are easy to analyze and

work with in the afterwards analysis

5. Sub-modules

a. Common

Common operations for the python environment as main folder, simulation

name, and handling of output files and folder.

b. DymEx

c. OpsysAlgorithms

Algorithms for controlling of test rig. Consisting of 3 python classes/algo-

rithms: 1. simple on/off, 2. Discrete PID and 3. Balance flow concept (For-

mentlig styring efter 1 rum altid er åben.).

d. OpsysInternal

Danish Technological Institute

12

e. OpsysLog

Handles logging during simulation.

f. OpsysModbusinterface

Handling all the basic communication for controller and simulation with mod-

bus server. Consisting of 5 classes;1. Reg, 2. IOInterface, 3. ModbusInter-

face, 4. Lead, 5. Follower. “Follower” and “Lead”, follows the earlier analogy

explained on the follower/lead example used for controller and simulation.

g. OpsysResultHandler

Handling the results from simulation and adds them to data file while simu-

lation is running.

h. TimeKeeper

Handles the simulation time and ensures the time keep in sync in relation to

real time, functions for conversion of time to strings etc. Consisting of 3

classes; 1. TimeBase, 2. Repeater, 3. TimeKeeper.

5. Test procedure

The section provides a description of a test procedure that ensures that data from the data

sources can be used and will cover the time period of simulation.

5.1. Start-up procedure

The following procedure must be followed to ensure that the data generated by the Trend

controller system during testing is stored correctly.

5.1.1. Pre-test procedure

1. Optional step: Change relevant settings in the CTS 963, e.g. toggle relevant

switches to ensure that input from SimPc is used as input to the Trend controllers.

2. Adapt the fmu_full_test_config.py to match the desired simulation to carry out.

3. Run system until system is ready for the actual test

o To ensure proper operation of the test rig, it is necessary to start the simu-

lation by running the python script “pymodbus_server.py. This ensures that

the test rig receives relevant feedback and can operate correctly.

4. Run test

o Start the controller.bat

o Start the simulation.bat

6. List of known issues

This section presents a list of known technical issues concerning the test rig and the com-

munication and control setup.

- The full stop signal to heat pump is very unstable, another solution should be found.

- Reading of NTC sensors are not correct, NTC sensors should be replaced with PT1000

sensors and then logged with an Agilent there sends the information to the inhouse Yoda

platform.

Danish Technological Institute

13

7. Data processing scripts

Run the analysis.py in python, data will be loaded and shown in corresponding plots.

Danish Technological Institute

14

8. Guide on how to operate the OPSYS 2 test rig

8.1. Modbus automatic execution in windows task schedule

General

Triggers

Danish Technological Institute

15

Actions

Conditions

Danish Technological Institute

16

Settings

8.2. Start test

2.1 - First ensure configuration of all the test constants and data sets are defined correctly in the
fmu_full_test_config.py according to the desired test.

2.2 - Execute: 2 start controller

2.3 - Execute: 3 start simulator

8.3. Analysis of test results

Run the analysis.py in python, data will be loaded and shown in corresponding plots.

