DNAPROKON

Reduce food waste by understanding your spoilers

STRYHNS

Reduce food waste

- Correct shelf life is key for sustainable food production
- Shelf life is affected by:
 - Oxidation (rancid e.g., fat)
 - Colour change (oxidation, enzymatic e.g., brown spots on meat, brown apple slice)
 - Microbiological activity (pathogens, spoilers)
 - Physical changes (too dry, too soft, freeze dry)
- How to improve?

High throughput sequencing made portable and quantitative

- DNA from dead bacterial cells a challenge
 - DNA is very stable
 - Bacteria is inactivated during processing
 - heat treatment, fermentation, etc.
 - Only live cells will grow and potentially spoil the product
- Several methods tested to distinguish between live and dead cells
- Treating with propidium monoazide followed by photo-activation

U N I V E R S I 1

High throughput sequencing made portable and quantitative

– Today:

- Quantification is only based on relative bacterial abundance
- The need:
 - Qualitative data
- We developed a method:
 - Cheap, reproducible standard
 - Co-amplified with the "bacteria" molecules for absolute quantification

Quantification of 16S rRNA gene amplicon copies

Absolute count of 16S rRNA gene copies of bacterium B = $a\lambda + b$

The method

- Rapid turnover
 - less than one workday
 - reduced hands-on time and waiting time
- From sample to start of sequencing in less than 6 hours
- Live base-calling = immediate results (but can run overnight)

Test at companies – fast & robust but much hands-on

3

DANISH TECHNOLOGICAL INSTITUTE

Examples of spoilage

- Gas production
 - *Leuconostoc: carnosum, mesenteroides*
 - Lactobacillus: brevis, alimentarius
 - Clostridium estherteticum
- Discolouration:
 - Leusconostoc gelidum
 - Pseudomonas libanensis
- Bad smell
 - Brochotrix thermospachta
 - *Clostridium* sp.

Pathogens and toxins: not visible no smell and no taste

DANISH TECHNOLOGICAL INSTITUTE

Spoilage is caused by different bacteria

— Veggie products:

- Leuconostoc:
 - mesenteroides, gelidum
- *Lactococcus*
- Lactobacillus:
 - sakei, parabuchnerii
- Carnobacterium
- Pseudomonas fragi
- Bacillus
- Pantoaea agglomerans
- others

- Meat products:
 - Leuconostoc:
 - carnosum, mesenteroides, gelidum
 - *Lactobacillus:*
 - brevis, paraalimentarius, curvatus, sakei,
 - Carnobacterium
 - Pseudomonas libanensis
 - *— Brochotrix thermospachta*
 - Clostridium:
 - Estherteticum, bowmani
 - others

Results for troubleshooting and proces control

— Troubleshooting:

- Identify the spoiler(s)
- Corrective actions:
 - Hygiene, Preservation, raw material, or?
- Process control:
 - Combine identification with:
 - Suppliers, raw material, ingredients, hygiene, changes over time, specific sites in the process line, etc.

<mark>celer\$ec</mark>	L Data upload & summary	He qu	atmap a antificat	and F ion	Process of	control	Dov	* wnload						
Heatmap Filter samples:	<unassigned»; <unassigned»-<="" th=""><th>0.2</th><th>0.3</th><th>83.9</th><th>98.4</th><th>61.2</th><th>99.5</th><th>82.8</th><th>56.8</th><th>0.7</th><th>57</th><th>100</th><th>0.7</th><th>5.6</th></unassigned»;>	0.2	0.3	83.9	98.4	61.2	99.5	82.8	56.8	0.7	57	100	0.7	5.6
Choose your type of filter	Pseudomonadaceae; Pseudomonas-	93.3	66.1	0.3	0.1	7.7	0.2	4	2.8	2.6	7.2	0	55.4	3.1
Date •	Listeriaceae; Brochothrix-	5.5	50.5	1.1	0	1.9	0.1	0.8	0.7	0.1	7.1	0	41.7	71.8
2023_07_10 •	Thermoactinomycetaceae; Laceyella-	٥	٥	14.5	1.2	23.4	0.1	14.4	35.6	0.6	23.3	ø	0.1	19.2
Sort x-axis according to:	Staphylococcaceae; Staphylococcus-	ø	۰	٥	0	٥	۰	D	0	19	o	ø	٥	0
Other variables:	Enterobacteriaceae; Salmoneila	0	٥	٥	0.2	3.8	٥	0	0	11.8	1.8	0	ø	0
Choose variable 1	Listeriaceae; Listeria-	0	٥	٥	0	0	٥	0	0.7	16.7	0	0	0	0
no plot.	Entercoccaceae; Entercocccus-	0	٥	0.1	0	0	0.1	0	2.1	12.7	1.8	0	٥	0
no plot 👻	Lectobecilaceae; Lincellectobacilus-	0	٥	٥	0	0	0	0	0.7	13.9	0	0		0
Adjust heatmap: Number of top lineages	Bacillaceae; Bacillus	o	٥	۰	0	0	0	0	0	54.4	0	0	0	o
· · · · · · · · · · · · · · · · · · ·	Remaining taxa (110)-	0.9	0.1	٥	0	1.9	0.1	0	0.7	7.5	1.8	0	2	0.3
Choose Taxonomy levels Level 01 Family		- Open termina	method digli-	- feed_feed_feed_	-lost_lost_teb.best	thed day! med past-	nad dig!_uden_paid*	tool day: uden past-	-teel upp "root	rected lattel par-	thred sett. Jan., dage-	itend saf, jai2_digi-	rediced turbler, efter-	-rot-repart protoco
				2	2	2	10 L	Lot	10L		E	E		

Finding critical places in the production line

- The spoiler dominate the product after 17 days
- Only few detected at day 1
- Detected at several places on the production line

Reducing food loss at B2B level

Food waste in Denmark is appr. **814.000 ton eadable food/year** (Miljøstyrelsen 2021).

We have looked into **barriers and drivers** for reducing food waste among **canteens**, **small industrial production facilities**, **and restaurants**

Value chain role	Estimated food waste tonnes/year (MST 2021)
Primary production	44.000
Food industry	385.000
Retail and wholesale	96.000
Restaurants	42.000
Households <i>TOTAL:</i>	247.000 814.000

Suggestions from B2B on how to reduce food waste

COMPANY CANTEENS

- PLANNING the menu is everything!
- Use smaller plates
- Discuss how to use leftovers
- Keep a <u>constant</u> focus on food waste - it's money saved!
- Design the buffet smart (expensive food at the end meat, bread, warm dishes)

COMMERCIAL KITCHENS

PLANNING the menu is everything!

Know your customers

Talk every day about how to use **leftovers** in new creative ways

Make arrangements with local NGOs to pick up excess food

Share knowledge

Have an **overview** in practice, not just from the PC, that includes frozen food and dry goods

RESTAURANTS

PLAN your menu wisely

Inform customers about their food waste - and your efforts

Use the creativity among the skilled chefs and the other employees for new recipes based on **excess food**

Stay focused on food waste it's money saved!

 Sell excess food to employees

Some years ago, we reduced the size of the plates by 2 cm. This reduced our meat consumption from appr. 210-240 kg meat/day to 140-150 kg. And we had much less waste

Best advice from the chef: "Start selling excess food to company employees"

Take home message

- DNA sequencing is fast track to identify your spoiler (several days 1 day)
- Easy to put a "name" on the bacteria
 - Important to the customers complaining (fx not dangerous bacteria)
- Controlling your process fermentation, recontamination etc.
- Knowing the spoilers makes it easier to optimize preservation and avoid food spoilage (product development)
- Knowing routes of contamination improve the chance to fight the problem

Thanks to:

- Green Development and Demonstration Programme (GUDP), Danish Agricultural Agency in the Ministry of Food, Agriculture and Fisheries;
- DTI performance contract 2021-2024, Danish Agency for Higher Education and Science, under The Ministry of Higher Education and Science Denmark
- Danish Pig Levy Foundation

DANISH TECHNOLOGICAL INSTITUTE