Visionudstyr til detektion af slagtekropsforureninger – udvikling af målekoncept

Rikke Hjort Hansen

Jeg er din kontaktperson

Skriv til mig

Indtast venligst et validt navn
Eller dit telefonnummer
Sender besked
Tak for din besked
Vi beklager

På grund af en teknisk fejl kan din henvendelse desværre ikke modtages i øjeblikket. Du er velkommen til at skrive en mail til Send e-mail eller ringe til +45 72 20 18 42.

Visionudstyr til detektion af slagtekropsforureninger – udvikling af målekoncept

Formål 2023

Formål: Projektets formål er at videreudvikle systemet til at dække indersiden af slagtekroppen, så en helkropsdækning opnås, samt at inkludere detektion af hår og pelsrester. Dertil er formålet at afklare anvendelsen af data fra systemet, så den nye information bliver brugt optimalt under den daglige drift på slagteriet.

Projektstatus 3. kvartal 2023

Det vigtigste nye output er, at der på værtsslagteriet lanceres en opdatering af brugerinterfacet, og at der er udviklet en AI-model, således at det er muligt at detektere gødningsforurening på ydersiden af slagtekroppen vha. de to nuværende kameratårne (100% dækning er estimeret mulig ved fire kameratårne). Software-programmerne er opdaterede, og der er foretaget performance-forbedringer mhp. at håndtere seks billeder i billedanalysen.

Den næste store aktivitet i projektet er at opbygge en markant bedre AI-model til detektion af gødning på ydersiden for hele slagtekroppen. Der er arbejdet med re-annotering af gødningsforureningen for at forbedre modellen. Ligeledes er der etableret et ”Golden standard” valideringssæt, så en mere objektiv validering af præcisionen kan udføres.

kafskærm

Oplæg:

Hjort, R. (2023) Bovines - carcass contamination. Seminar arrangeret af DTU og L&F.Oktober

Projektstatus 2. kvartal 2023

Det vigtigste nye output er, at systemet anvendes i den daglige drift. Jf. dialog med værtsslagteriet er der enighed om, at fokuspunkterne er:

1)Forbedring af algoritme: Der er stadig mange falske positive. Værtsslagteriet er behjælpelig med at identificere billeder, hvor algoritmen har fejlet. Der er etableret en procedure for at gemme disse billeder til brug for videreudviklingen.

2)Detektion på midterstykkets yderside (afmærket med blåt) set fra den vinkel, der ser indersiden (bughule-vinklen). Der er arbejdet med udvikling af en ny algoritme til at skelne inderside fra yderside, da nuværende algoritme kun virker på ydersiden og ikke på indersiden.

Desuden er der kigget på billeder af indersiden til træning af en algoritme. Der findes dog kun få gødningsfund, hvilket vanskeliggør algoritmeudviklingen.

Den næste store aktivitet i projektet er at idriftsætte detektion på midterstykkets yderside, set fra bughule-vinklen. Der skal laves et nyt brugerinterface til håndtering af flere billeder samt visning på en brugervenlig måde.

Der skal ligeledes arbejdes mere med validering og kvantificering af algoritmens præcision. 

foru2

Projektstatus 1. kvartal 2023

Det vigtigste nye output er, at detektionsalgoritmen til ydersiden er taget i brug på værtsslagteriet, dvs. at man på en skærm kan se, hvor der er detekteret gødning. Værtsslagteriet har gjort de første erfaringer med systemet, og der er en løbende dialog mht. performance.

Vi arbejder med validering af detektionsalgoritmen samt mulighederne for at forbedre den. En udfordring er at detektere gødning steder på slagtekroppen, hvor vi ikke har tilstrækkelig med reference-data til at kunne træne en stabil AI-model.

Den næste store aktivitet i projektet er at indsamle mere reference-data til forbedring af algoritmen til ydersiden. Vi er også startet på at annotere fund af gødning på indersiden for at få referencemateriale til at udvikle en detektionsalgoritme, der dækker indersideområderne, dvs. gennemskåret rygsøjle, ribbenskavitet mv. Dette giver udfordringer, da det er svært at finde eksempler på gødning på indersiden.

 

Projektet 2018-2022

Formålet med projektet er at fastlægge et samlet målekoncept, der benytter kamerateknologi som hjælpe-værktøj til på slagtekroppen at identificere forekomst af primært fækal forurening, som efterfølgende skal fjer-nes. Udstyret skal kunne indgå i den nuværende produktion på et kreaturslagteri og dermed umiddelbart kunne skabe værdi i de daglige processer. Derfor sigtes der efter at udvikle et simpelt og stabilt udstyr, der er nemt at integrere i produktionen som følge af lav kompleksitet og lave omkostninger.

Det skal klarlægges, i hvilket omfang billeder, billedbehandling og detektionsalgoritme kan anvendes til automatiseret identifikation af fækal forurening.

 

Nyhedsbrev:

DMRI News (jan 2022) Kunstig intelligens og kreaturslagterier

 

Konferenceindlæg:

Hviid, M. (2021) Vision system for finding faecal and bile contaminations on pig and cattle carcasses. Nordic Seminar on the Future of Meat Control and Animal Welfare

 

Årsrapporter: