Kurser

4 dages kursus 
Læring inden for et specifikt emne

Data Engineering on Microsoft Azure [DP-203T00]

7. - 22. oktober 2024 Taastrup
11. - 26. november 2024 Aarhus
5. - 19. december 2024 Taastrup
DKK  17.999
ekskl. moms
Nr. 91010 A
4,4
Fremragende
27 anmeldelser
Arrangementer på Teknologisk Institut bliver evalueret af deltagerne. Stjernerne angiver deltagernes gennemsnitlige tilfredshed inden for de sidste 5 år.

Lær hvordan du designer, udvikler og sikre dataløsninger i Azure og få en grundlæggende viden om de teknikker, der bruges til processering og lagring. Du lærer også om extract, transform og load af data ved hjælp af Apache Spark funktionen, der findes i Azure Synapse Analytics, Azure Databricks, Azure Data Factory eller i Azure Synapse pipelines.

Deltagerprofil

Kurset er for dig, som arbejder med data og datamodellering, dataaritektur og Business Intelligence og som gerne vil lære at designe og udvikle analytiske dataløsninger på Microsoft Azure Data platform.

Forudsætninger

Du forventes at have et grundlæggende kendskab til Azure og du har arbejdet med datamodellering samt deltaget på DP-900 Microsoft Azure Data Fundamentals eller have tilsvarende viden.

Udbytte

  • Udforske indstillinger for processering og lagring af Data Engineering workloads i Azure
  • Udføre Data Exploration og -Transformation i Azure Databricks
  • Explore, Transform og Load (ETL) i et Data Warehouse ved hjælp af Apache Spark
  • Importere og indlæse data i Data Warehouse
  • Transformere data med Azure Data Factory- eller Azure Synapse-pipelines
  • Integrere data fra Notebooks med Azure Data Factory- eller Azure Synapse-pipelines
  • Udføre end-to-end-sikkerhed med Azure Synapse Analytics
  • Udføre Stream Processing i realtid med Stream Analytics

Det får du på kurset

Vi sørger for, at rammerne er i orden, så du kan fokusere på at lære.

Efter du har fuldendt kurset, vil du modtage et kursusbevis.

Kursusbevis

Hos Teknologisk Institut bruger vi kun erfarne undervisere.

Erfaren underviser

Certificeret underviser.png

Certificeret underviser

På kurset får du morgenmad, frokost, snacks og drikkevarer.

Fuld forplejning

På kurset er der indtænkt øvelser og deltagerinddragelse.

Øvelser og inddragelse

Materiale på engelsk

Materiale på engelsk

Undervisning på dansk

Undervisning på dansk

Tæt på kursusstedet er der gratis parkering.

Gratis parkering

Indhold

Modul 1: Explore compute and storage options for data engineering workloads
  • This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration.

    - Introduction to Azure Synapse Analytics
    - Describe Azure Databricks
    - Introduction to Azure Data Lake storage
    - Describe Delta Lake architecture
    - Work with data streams by using Azure Stream Analytics
Modul 2: Run interactive queries using Azure Synapse Analytics severless SQL pools
  • In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs).

    - Explore Azure Synapse serverless SQL pools capabilities
    - Query data in the lake using Azure Synapse serverless SQL pools
    - Create metadata objects in Azure Synapse serverless SQL pools
    - Secure data and manage users in Azure Synapse serverless SQL pools
Modul 3: Data exploration and transformation in Azure Databricks
  • This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data.

    - Describe Azure Databricks
    - Read and write data in Azure Databricks
    - Work with DataFrames in Azure Databricks
    - Work with DataFrames advanced methods in Azure Databricks
Modul 4: Explore, transform, and load data into the Data Warehouse using Apache Spark
  • This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool.

    - Understand big data engineering with Apache Spark in Azure Synapse Analytics
    - Ingest data with Apache Spark notebooks in Azure Synapse Analytics
    - Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics
    - Integrate SQL and Apache Spark pools in Azure Synapse Analytics
Modul 5: Ingest and load data into the data warehouse
  • This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion.

    - Use data loading best practices in Azure Synapse Analytics
    - Petabyte-scale ingestion with Azure Data Factory
Modul 6: Transform data with Azure Data Factory or Azure Synapse Pipelines
  • This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks.

    - Data integration with Azure Data Factory or Azure Synapse Pipelines
    - Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines
Modul 7: Orchestrate data movement and transformation in Azure Synapse Pipelines
  • In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines.

    - Orchestrate data movement and transformation in Azure Data Factory
Modul 8: End-to-end security with Azure Synapse Analytics
  • In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools.

    - Secure a data warehouse in Azure Synapse Analytics
    - Configure and manage secrets in Azure Key Vault
    - Implement compliance controls for sensitive data
Modul 9: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link
  • In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless.

    - Design hybrid transactional and analytical processing using Azure Synapse Analytics
    - Configure Azure Synapse Link with Azure Cosmos DB
    - Query Azure Cosmos DB with Apache Spark pools
    - Query Azure Cosmos DB with serverless SQL pools
Modul 10: Real-time Stream Processing with Stream Analytics
  • In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput.

    - Enable reliable messaging for Big Data applications using Azure Event Hubs
    - Work with data streams by using Azure Stream Analytics
    - Ingest data streams with Azure Stream Analytics
Modul 11: Create a Stream Processing Solution with Event Hubs and Azure Databricks
  • In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams.

    - Process streaming data with Azure Databricks structured streaming

Bemærk: Indhold for dette kursus tilpasses løbende af Microsoft for at følge med den løbende teknologiske udvikling, der kan derfor ske ændringer af kursusindhold uden varsel.

     

    Anmeldelser af Data Engineering on Microsoft Azure [DP-203T00]

    4,4
     
    Fremragende Baseret på 27 anmeldelser
    Arrangementer på Teknologisk Institut bliver evalueret af deltagerne. Stjernerne angiver deltagernes gennemsnitlige tilfredshed inden for de sidste 5 år.
    Fremragende
    Meget godt
    Godt
    Mindre godt
    Ikke godt

    Certificering

    Dette kursus leder hen mod eksamen DP-203 Data Engineering on Microsoft Azure. Du skal bestille og betale for din eksamen særskilt. Ved beståelse opnås certificeringen Micrsosoft Certified Data Engineer, Associate.

    Microsoft skriver om denne eksamen

    • Azure data engineers help stakeholders understand the data through exploration, and they build and maintain secure and compliant data processing pipelines by using different tools and techniques. These professionals use various Azure data services and frameworks to store and produce cleansed and enhanced datasets for analysis. This data store can be designed with different architecture patterns based on business requirements, including modern data warehouse (MDW), big data, or lakehouse architecture.
    • Azure data engineers also help to ensure that the operationalization of data pipelines and data stores are high-performing, efficient, organized, and reliable, given a set of business requirements and constraints. These professionals help to identify and troubleshoot operational and data quality issues. They also design, implement, monitor, and optimize data platforms to meet the data pipelines.
    • Candidates for this exam should have subject matter expertise in integrating, transforming, and consolidating data from various structured, unstructured, and streaming data systems into a suitable schema for building analytics solutions.
    • Candidates for this exam must have solid knowledge of data processing languages, including SQL, Python, and Scala, and they need to understand parallel processing and data architecture patterns. They should be proficient in using Azure Data Factory, Azure Synapse Analytics, Azure Stream Analytics, Azure Event Hubs, Azure Data Lake Storage, and Azure Databricks to create data processing solutions.

    Læs mere om IT-certificering her.

    Underviser

    Undervisningen varetages af en erfaren underviser fra Teknologisk Instituts netværk bestående af branchens dygtigste undervisere.

    Vælg dato

    Taastrup
    7. - 22. oktober 2024
    Aarhus
    11. - 26. november 2024
    Taastrup
    5. - 19. december 2024