Kurser

4 dages kursus

Data Engineering on Microsoft Azure [DP-203T00]

31. januar til 11. februar 2022 Taastrup
2. - 18. marts 2022 Aarhus
21. april til 6. maj 2022 Taastrup
23. maj til 3. juni 2022 Aarhus
DKK  16.999
ekskl. moms
Nr. 91010 A

Lær hvordan du designer, udvikler og sikre dataløsninger i Azure og få en grundlæggende viden om de teknikker, der bruges til processering og lagring. Du lærer også om extract, transform og load af data ved hjælp af Apache Spark funktionen, der findes i Azure Synapse Analytics, Azure Databricks, Azure Data Factory eller i Azure Synapse pipelines.

Deltagerprofil

Kurset er for dig, som arbejder med data og datamodellering, og som gerne vil lære at designe og udvikle analytiske dataløsninger på Microsoft Azure Data platform.

Forudsætninger

Du forventes at have et grundlæggende kendskab til arbejdet med datamodellering samt have deltaget på DP-900 Microsoft Azure Data Fundamentals eller have tilsvarende viden.

Udbytte

  • Udforske indstillinger for processering og lagring af Data Engineering workloads i Azure
  • Udføre Data Exploration og -Transformation i Azure Databricks
  • Explore, Transform og Load (ETL) i et Data Warehouse ved hjælp af Apache Spark
  • Importere og indlæse data i Data Warehouse
  • Transformere data med Azure Data Factory- eller Azure Synapse-pipelines
  • Integrere data fra Notebooks med Azure Data Factory- eller Azure Synapse-pipelines
  • Udføre end-to-end-sikkerhed med Azure Synapse Analytics
  • Udføre Stream Processing i realtid med Stream Analytics

Indhold

Modul 1: Explore compute and storage options for data engineering workloads
  • This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration.
    • Introduction to Azure Synapse Analytics
    • Describe Azure Databricks
    • Introduction to Azure Data Lake storage
    • Describe Delta Lake architecture
    • Work with data streams by using Azure Stream Analytics
Modul 2: Run interactive queries using Azure Synapse Analytics severless SQL pools
  • In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs).
    Explore Azure Synapse serverless SQL pools capabilities
    Query data in the lake using Azure Synapse serverless SQL pools
    Create metadata objects in Azure Synapse serverless SQL pools
    Secure data and manage users in Azure Synapse serverless SQL pools
Modul 3: Data exploration and transformation in Azure Databricks
  • This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data.
    Describe Azure Databricks
    Read and write data in Azure Databricks
    Work with DataFrames in Azure Databricks
    Work with DataFrames advanced methods in Azure Databricks
Modul 4: Explore, transform, and load data into the Data Warehouse using Apache Spark
  • This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool.
    Understand big data engineering with Apache Spark in Azure Synapse Analytics
    Ingest data with Apache Spark notebooks in Azure Synapse Analytics
    Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics
    Integrate SQL and Apache Spark pools in Azure Synapse Analytics
Modul 5: Ingest and load data into the data warehouse
  • This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion.
    Use data loading best practices in Azure Synapse Analytics
    Petabyte-scale ingestion with Azure Data Factory
Modul 6: Transform data with Azure Data Factory or Azure Synapse Pipelines
  • This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks.
    Data integration with Azure Data Factory or Azure Synapse Pipelines
    Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines
Modul 7: Orchestrate data movement and transformation in Azure Synapse Pipelines
  • In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines.
    Orchestrate data movement and transformation in Azure Data Factory
Modul 8: End-to-end security with Azure Synapse Analytics
  • In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools.
    Secure a data warehouse in Azure Synapse Analytics
    Configure and manage secrets in Azure Key Vault
    Implement compliance controls for sensitive data
Modul 9: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link
  • In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless.
    Design hybrid transactional and analytical processing using Azure Synapse Analytics
    Configure Azure Synapse Link with Azure Cosmos DB
    Query Azure Cosmos DB with Apache Spark pools
    Query Azure Cosmos DB with serverless SQL pools
Modul 10: Real-time Stream Processing with Stream Analytics
  • In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput.
    Enable reliable messaging for Big Data applications using Azure Event Hubs
    Work with data streams by using Azure Stream Analytics
    Ingest data streams with Azure Stream Analytics
Modul 11: Create a Stream Processing Solution with Event Hubs and Azure Databricks
  • In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams.
    Process streaming data with Azure Databricks structured streaming

Certificering

Dette kursus leder hen mod eksamen DP-203 Data Engineering on Microsoft Azure. Eksamen bestilles og betales særskilt. Ved beståelse opnås certificeringen Micrsosoft Certified Data Engineer, Associate.

Microsoft skriver om denne eksamen

  • A candidate for the Azure Data Engineer Associate certification should have subject matter expertise integrating, transforming, and consolidating data from various structured and unstructured data systems into structures that are suitable for building analytics solutions.
  • Responsibilities for this role include helping stakeholders understand the data through exploration, building and maintaining secure and compliant data processing pipelines by using different tools and techniques. This professional uses various Azure data services and languages to store and produce cleansed and enhanced datasets for analysis.
  • An Azure Data Engineer also helps ensure that data pipelines and data stores are high-performing, efficient, organized, and reliable, given a specific set of business requirements and constraints. This professional deals with unanticipated issues swiftly and minimizes data loss. An Azure Data Engineer also designs, implements, monitors, and optimizes data platforms to meet the data pipeline needs.
  • A candidate for this certification must have solid knowledge of data processing languages, such as SQL, Python, or Scala, and they need to understand parallel processing and data architecture patterns.

Læs mere om IT-certificering her.

Underviser

Undervisningen varetages af en erfaren underviser fra Teknologisk Instituts netværk bestående af branchens dygtigste undervisere.

Vælg dato

Taastrup
31. januar til 11. februar 2022
Aarhus
2. - 18. marts 2022
Taastrup
21. april til 6. maj 2022
Aarhus
23. maj til 3. juni 2022
Taastrup
7. - 23. september 2022

Få ny inspiration til din kompetence­udvikling

Unikke tilbud, relevante artikler og nyt om vores kurser og uddannelser.

Indtast venligst et validt navn
Tilmelder nyhedsbrev
Tak for din tilmelding
Teknisk fejl

Der er desværre en systemfejl på nuværende tidspunkt. Du kan alternativt skrive en mail til data@teknologisk.dk